重元素の起源の解明に向けた 原子データの構築と中性子星合体の観測

田中 雅臣(東北大学)

加藤 太治 坂上 裕之 村上泉(核融合科学研究所)中村 信行(電気通信大学) 田沼 肇(東京都立大学)Gediminas Gaigalas (リトアニアVilnius大学) 和南城 伸也(AEI)関口 雄一郎(東邦大学) (C) NASA

*原子物理 *宇宙物理

● 元素の起源と中性子星合体

● 原子物理・宇宙物理の連携研究:原子データの構築

元素の起源を解明したい											速い中性子捕獲反応 (rプロセス)が必要							
1 H	Big bang Platir									Go	old						² He	
3 Li	⁴ Be											5 B	6 (7 N	8 ()	9 F	10 Ng	
11	12	Stars and supernovae13141514AlSiP												16	17	18		
Na	Mg													S	C	Ar		
19	²⁰	21	22	23	24	²⁵	²⁶	27	28	2)	³⁰	³¹	³²	33	³⁴	³⁵	³⁶	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
³⁷	38	39	⁴⁰	41	⁴²	43	44	45	46	47	48	49	50	51	⁵²	53	⁵⁴	
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe	
55	56	^{57~71}	72	⁷³	74	⁷⁵	76	77	78	⁷⁹	⁸⁰	81	⁸²	⁸³	⁸⁴	⁸⁵	⁸⁶	
CS	Ba	La-Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
⁸⁷	⁸⁸	^{89~103}	104	¹⁰⁵	106	¹⁰⁷	¹⁰⁸	¹⁰⁹	110	111	¹¹²	113	114	115	116	117	118	
Fr	Ra	Ac-Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og	
			57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	⁶⁸ Er	⁶⁹ Tm	70 Yb	71 Lu	
		_	⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	⁹⁶ Cm	⁹⁷ Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

「キロノバ」の輻射輸送シミュレーション Tanaka & Hotokezaka 2013 網羅的な重元素のデータが必要 (天文ではこれまでニーズがなかった) Time = 1.1 days

● 元素の起源と中性子星合体

● 原子物理・宇宙物理の連携研究:原子データの構築

経緯とこれまでの研究

- 2016/3: セミナー@電通大 (中村信行さん研究室)
 - とにかく何か始めてみよう
- FY 2016-2017: 自然科学研究機構 「若手研究者による分野間連携プロジェクト」
 - 原子構造計算と分光実験を開始
- FY 2018-2019: JSPS 二国間共同研究 (リトアニア)
 - 高精度原子構造計算との比較
- FY 2019-2022: JSPS 基盤研究A
 - 網羅的な原子構造計算
 - 実験による検証

MT, Kato+18 ApJ, 852, 109

MT+17, PASJ, 69, 102

Gaigalas+20, ApJS, 248, 13

Ladziute+20 ApJS, 248, 17

MT, Kato+20, MNRAS, 496, 1369

Banerjee, MT+20 ApJ, 901, 29

原子物理と宇宙物理の連携で 重力波天体の同定・重元素の起源解明のための基本データを構築

2016年9月 - 2017年8月:重元素の原子構造計算 => 吸収係数

原子のエネルギー準位とE1遷移を 二つの異なる手法で計算 ランタノイドの吸収係数:とくに赤外線で大きい

加藤 太治さん Gediminas Gaigalasさん

MT, Kato, Gaigalas et al. 2018, ApJ, 852, 109

2017年8月17日 GW170817

中性子星合体からの 重力波初検出

LIGO Scientific Collaboration and Virgo Collaboration, 2017, PRL

GW170817: 電磁波対応天体

MT et al. 2017, PASJ, 69, 102

「キロノバ」が見えた = 重元素合成の証拠 赤外線で強い <= ランタノイド元素の性質

原子構造計算の進展

MT, Kato, Gaigalas, Kawaguchi 2020, MNRAS, 496, 1369

実験による原子データの検証

レーザー誘起ブレークダウン分光@電通大

(C) 中村信行さん

電荷交換反応 <= 電子サイクロトロン共鳴型イオン源 @都立大

(C) 田沼肇さん

 +LHD @核融合研 +電子ビームトラップ @電通大

 相補的な実験データの取得

 -> 多角的な原子データの検証へ

未解決の問題

- 中性子星合体でどの元素が、どれぐらいできたのか?
- 本当に中性子星合体が重元素の起源か?

発生率x合成量は足りる?

=> 今後の重力波+電磁波観測で検証 (2022-)

今後の展開

- 正確で網羅的な原子データの構築
 => 電磁波シグナルから元素の量や種類を推定する基礎
- より現実的な輻射輸送モデルへ (非平衡プラズマ)
 => 衝突確率なども重要に

まとめ

- 原子物理+宇宙物理の連携で重元素原子データを構築
 - 複数の計算手法・分光実験による検証
 - 重力波+電磁波観測で重元素の起源の理解へ

- 分野融合研究:個人的感想
 - とにかく面白い(宇宙しか考えてこなかったから?)
 - ・物理の理解が深まる、視野が広がる(学生さんも)
 - 「もともとは一つの分野だった」ことを痛感

Appendix

Optical Infrared

Pian et al. 2017

何かしらの特徴はあるけど元素は不明