核融合炉の設計の仕方

株式会社Helical Fusion 後藤拓也

Fusion Science School (FSS) 京都 2025.2.18 京都 竹の郷温泉 万葉の湯 ホテル京都エミナース

自己紹介

Helical Fusion

後藤拓也

2005-2008

兵庫県神戸市生まれ 1981

岐阜県立岐阜北高校 1996-1999

東京大学工学部システム創成学科 2001-2003

環境・エネルギーシステム(E&E) コース

東京大学大学院新領域創成科学研究科 2003-2005

先端エネルギー工学専攻 修士課程

同博士課程、2008年修了、博士(科学)

自然科学研究機構 核融合科学研究所 助教

2008-2023 株式会社 Helical Fusion 副CTO 2021(磁気浮上内部導体装置) レーザー核融合炉設計

プラズマ実験

環境・エネルギー問題に興味

資源・海洋・原子力

ヘリカル核融合炉設計・核融合工学

核融合炉の社会実装

弊社紹介

会社名: 株式会社Helical Fusion

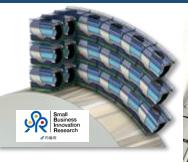
設立: 2021年10月

拠点: 東京都(本社)、岐阜県(研究開発)

事業内容: 核融合プラントの開発、要素技術の開発・提供など

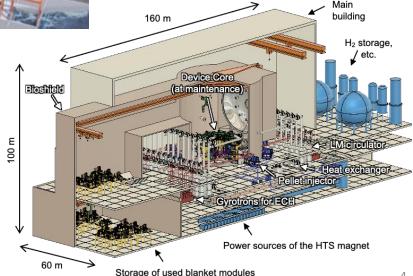
従業員数: 30名

出身母体: 核融合科学研究所


さまざまなバックグラウンドをもつ専門家集団

ヘリカル核融合炉

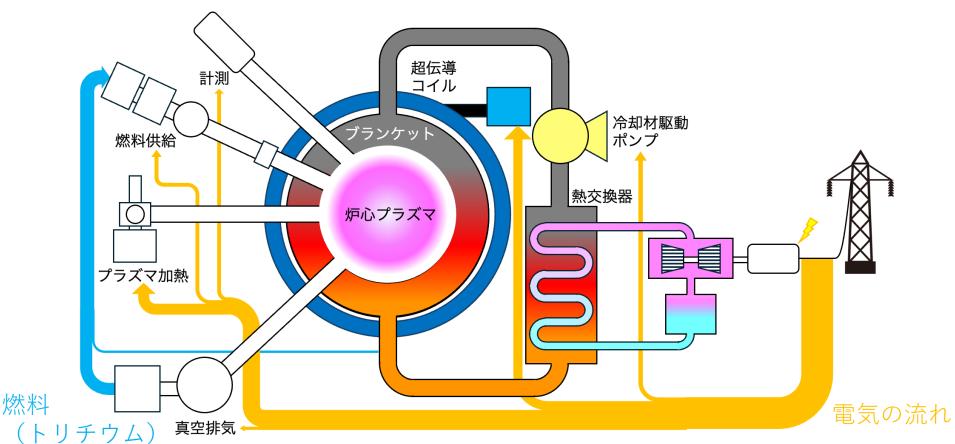
要素技術開発例(超伝導)



核融合炉は「装置」ではなく「プラント」

トカマク型核融合原型炉 (QST webサイトより)

ヘリカル型核融合パイロット プラント(Helical Fusion社)



核融合炉は「装置」ではなく「プラント」

燃料

の流れ

「機能」を満たす「仕様」を決める

● 例:ゲーミングPC

機能(function)

- →製品が果たす役割
- 快適にゲームができる環境の提供(スムーズな画面描画、 近近のない操作、高速大容量データ通信、…)

性能(performance)

- →機能の定量的指標
- 画面解像度○p
- リフレッシュレート △Hz
- 読み込み速度□GB/s
- 通信速度◇Gbps
- •

仕様(specification)

- →具体的手段
- CPU△△
- メモリ◇GB
- グラフィックカード□□
- SSD♦TB
- • •

制約条件

寸法、コスト、静音性、耐久性、・・・

「機能」を満たす「仕様」を決める

● 例:自動車

機能(function)

- →製品が果たす役割
- ・家族で使える広さ
- 乗り心地の良さ
- 安全性能
- 長く使える

• • • •

性能(performance)

- →機能の定量的指標
- 乗車定員〇人
- 燃費○km/L
- トルク△△
- 最小回転半径□**m**
- JNCAPレベル
- 走行距離◇km

...

仕様(specification)

- →具体的手段
- 寸法〇m
- 材質
- ボディ厚み□□
- 車体重量△kg

. . . .

制約条件

寸法、材質、加工方法、納期、コスト、保守、安全性、信頼性、・・・

「機能」を満たす「仕様」を決める

● 例:核融合発電プラント

機能(function)

- →製品が果たす役割
- 作りやすい
- 使いやすい
- 低環境負荷
- ・コスト競争力

• • •

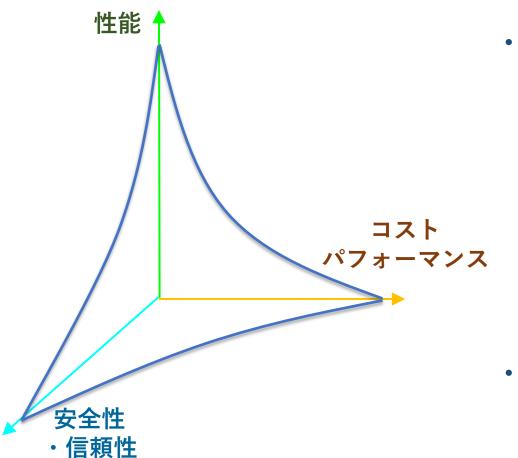
性能(performance)

- →機能の定量的指標
- 発電出力〇万kW
- 稼働率△%
- プラント寿命◇年
- 発電原価□円/kWh

•

仕様(specification)

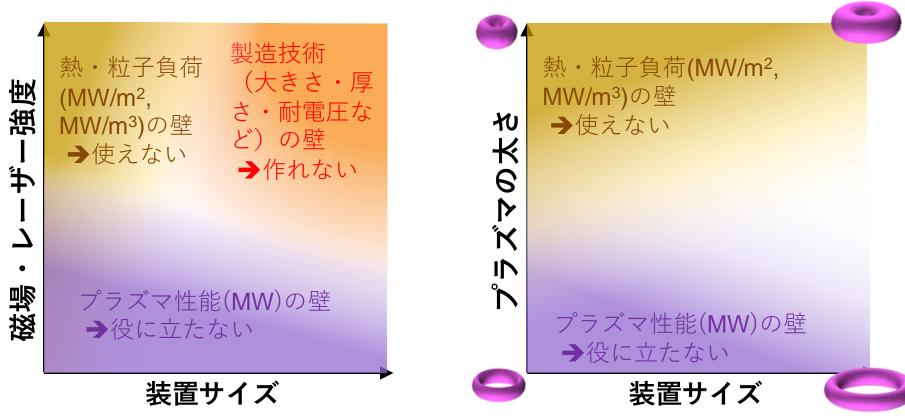
- →具体的手段
- 装置半径○m
- 磁場△T
- 核融合出力◇MW


. . . .

制約条件

寸法、材料、建設手法、建設期間、コスト、保守性、安全性、信頼性、・・・

制約条件はトレードオフ



- 例えば自動車なら・・・
 - ✓ 薄く(軽く)すれば燃費 が良くなる
 - ✓ しかし安全性に問題
 - ✓ 軽くて丈夫な材料を使え ば解決
 - ✓その代わり高い

• 価格を度外視すれば基本的に いいものは作れることが多い

核融合炉は余裕をもった設計ができない

価格・安全性云々の前にまず作るのがとても難しい!

炉心プラズマ性能

- 閉じ込め時間
- 密度限界
- 圧力限界
- ...

材料特性

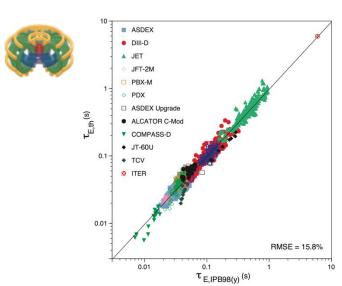
- 許容応力
- 中性子フルーエンス限界
- 超伝導条件・クエンチ保護
- ...

機器性能

- 冷却材圧力損失
- 機器使用温度
- 機器製作性
- ...

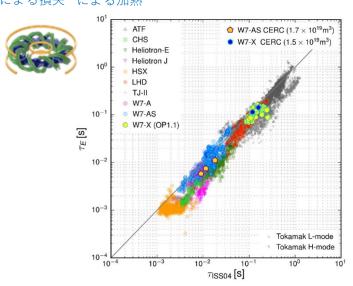
プラント性能

- 正味電気出力
- トリチウム増殖比(TBR)
- 建設費・発電原価
- 放射性廃棄物量
- ••



炉心プラズマ性能

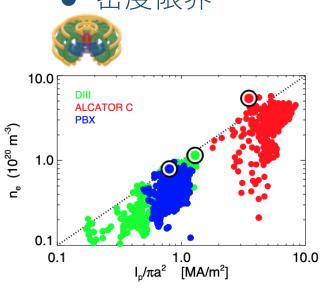
プラズマのもつエネルギー


ullet 閉じ込め時間 au_E : $\dfrac{\mathrm{d}W_p}{\mathrm{d}t}$ =

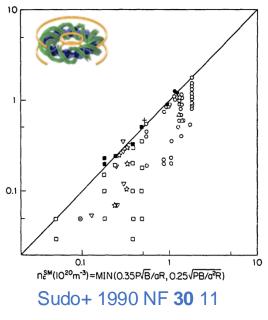
$$rac{\mathrm{d}W_p}{\mathrm{d}t} = -rac{W_p}{ au_E} - rac{P_{\mathrm{rad}} + \eta_lpha P_lpha + \eta_{\mathrm{aux}} P_{\mathrm{aux}}}{p_{\mathrm{min}}}$$
 核融合反応 外部加熱 による損失 による加熱

1999 NF **39** 1375

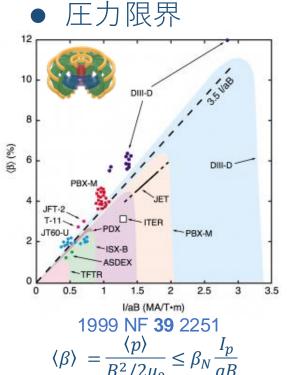
 $E_E^{\text{IPB98}(y,2)} = 0.056 I_p^{0.93} B_t^{0.15} \bar{n}_e^{0.41} P^{-0.69} R^{1.97} \varepsilon^{0.58} \kappa^{0.78}$


R.C. Wolf+ 2017 NF **57** 102020

 $\tau_E^{\rm ISS04v3} = f_{\rm ren} 0.134 \alpha^{2.28} R^{0.64} P^{-0.16} \bar{n}_e^{0.54} B^{0.84} \iota_{2/3}^{0.41}$


炉心プラズマ性能

密度限界



Greenwald 2002 PPCF 44 R27

$$n_{\rm GW} = I_p/(\pi a^2)$$

$$n_{\rm Sudo} = 0.25 \sqrt{P_{\rm abs} B/(\alpha^2 R)}$$

• このような物理スケーリングがあって初めて設計が可能

材料特性

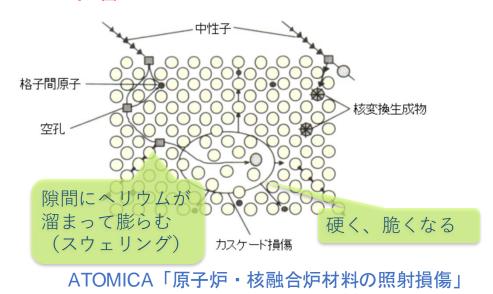
許容応力

多い

$$\sigma_{lim} = min \left(\frac{2}{3} \sigma_{y}, \frac{1}{3} \sigma_{u} \right)$$
応力 σ

最大応力 σ_{u}

降伏応力 σ_{y}


高温になると
下がることが
多い

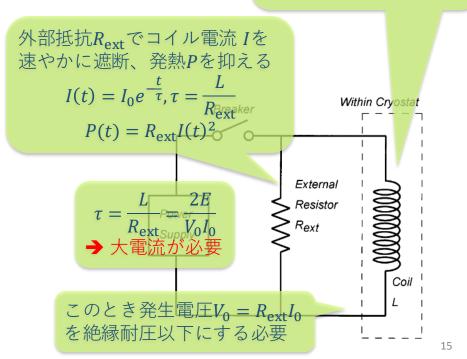
能性材料
(伸びずに壊れる)

延性材料
(伸びて壊れる)

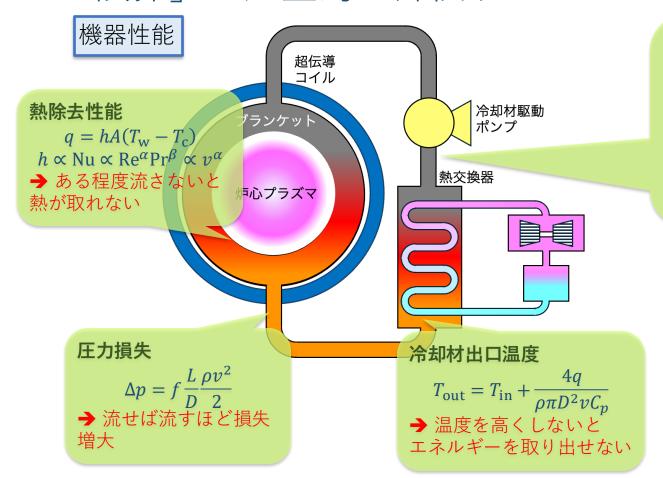
歪 ε

中性子フルーエンス 弾き出し損傷(dpa)に応じて様々な 影響

材料特性

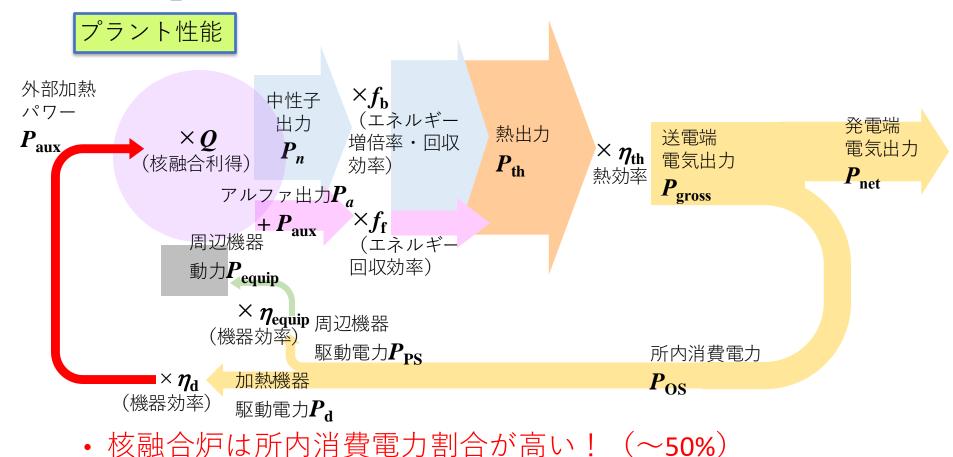

● 超伝導性能

$$j = j(B, T, \varepsilon) \leftarrow \varepsilon$$
: ひずみ
中性子照射で不可逆的に劣化



• クエンチ保護

超伝導状態が失われると コイルのもつエネルギー $E = \frac{1}{2}LI^2$ が放出 \rightarrow コイル損傷のおそれ


機器使用温度

必ず冷却材温度より高い

→使用可能温度以下に抑えるためには冷却材温度にも 上限

高温で使える材料は一般に 高価かつ製作性に難

プラント性能

材料のイノベーションで ここの△や×を改善でき る可能性はあるが、特殊 材料は高価 → 建設費増

核融合出力

建設費: 〇

発電出力: △

稼働率:×

寿命:X

発電原価: X

建設費: 〇

発電出力: △

稼働率: △

寿命:△ 発電原価: X

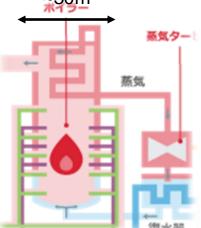
装置サイズ

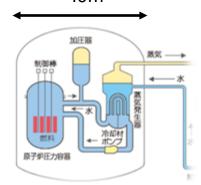
建設費:X

発電出力:〇

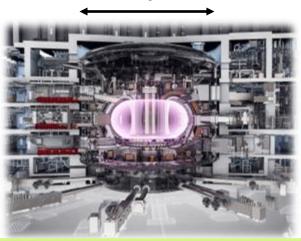
稼働率: ○

寿命: 〇


発電原価: ○



空間的制約が核融合炉を難しくする


火力発電 (JERA webサイトより) ~30m

原子力発電 (北陸電力 webサイトより) ~40m

核融合炉 (ITER webサイトより) ~40m

- 出力は燃料の量で決まり、熱源の大きさにあまり依存しない
- 熱源と熱を取る媒体(水)が同じ場所に存在し、体積で熱を受ける
- これらの周りには他の機器がないので、 出力に応じ適切な形状・サイズを選べる

- 出力は熱源(プラズマ)の大きさに強く依存、 熱バランスで成り立っているため、一定以上の 大きさが必要(そもそもが大きい)
- 熱源と熱を取る部分(ブランケット)が離れていて、面積で熱を受ける部分がある
- 他の機器に囲まれていて、形状・サイズに制約

「本質」を見極める

	「限界」のもつ性質	設計における基本的な考え方
炉心プラズマ	物理で決まっているため基本動かし難い経験則が主で厳密ではないブレークスルー(閉じ込め改善など)はありうる	• 基本限界を超えずに設計するが、超えたら他の設計がどう緩和するかは見ておく
材料特性	・ 元素を選んだら厳密に決まる・ 元素の組み合わせは無数	データのあるものが優先新材料は魅力的だが、製作可能性などと天秤にかける必要
機器性能	・ 設計での工夫は可能、製作性については 技術革新もありうる(ex.積層造形)・ 詳細設計がないと決めづらい	原理上可能であることが前提であとは どれだけ余裕を見るか詳細設計からのフィードバックも重要
プラント性能	状況(立地、国際情勢等)に強く依存コスト・寿命は既存電源等からかけ離れたものにはできないコスト(特に将来)は定量化が難しい	• 傾向(設計パラメータ依存性)を分析 しつつ、数字だけを鵜呑みにしないよ うにする

「理論」だけでなく「理念」が必要

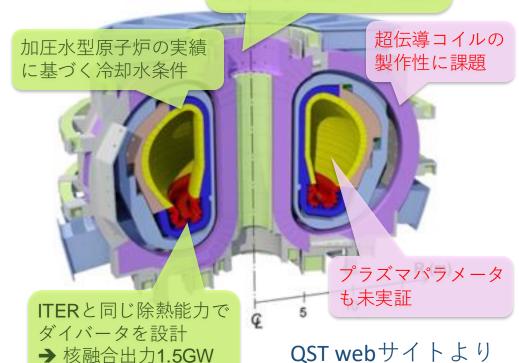
- それぞれの「限界」をモデリングして基本設計パラメータ (装置サイズなど)に落とし込むことは可能
 - ➤ それを組み合わせた「システム設計コード(Systems code)」 により基本設計パラメータの組を探索するのが設計の出発点

 $X = X(R, B, P_{\text{fus}}, ...), X$:電気出力、建設費、発電原価など

- とはいえ単純な数学的最適化だけでは決まらない
 - ▶ まだ誰も作ったことがないので不確実性は非常に大きい
 - ▶ コストや製作性を重視しすぎてプラントとして機能しなくて は意味がない

事例(1): トカマク原型炉

設計要件(核融合科学技術委員会における定義):


- ① 数十万kWを超える定常かつ安定 した電気出力
- ② 実用に供し得る稼働率
- ③ 燃料の自己充足性を満足する総合的なトリチウム増殖

技術的実現性の考慮:

- ① ITERで採用された技術の最大限 の活用
- ② ITERで採用されない技術に対し 産業界がこれまで培ってきた発 電プラント技術や運転経験の取 り入れ
- ③ ITERやJT-60SAから見通しうる 炉心プラズマの想定

調整運転時に確実に2時間 パルス運転ができるように 中心ソレノイドコイル半径 を決定 → 装置サイズ8.5m

事例(2): HF社へリカル核融合炉

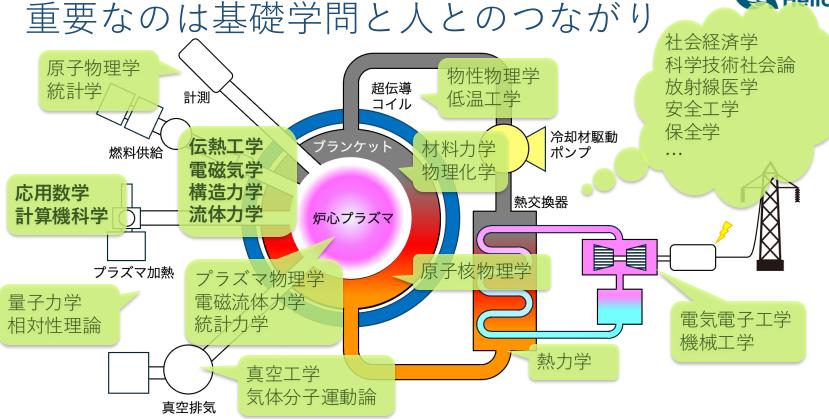
新技術の実証が 必要

想定要件:

- ① LHD実験から外挿可能なプラズマ性能
- ② LHDの建設経験から想定可能な サイズ
- ③ 発電プラントとして十分な正味 電気出力
- ④ 軽水炉と同程度の建設コスト
- ⑤ 1年以上の連続定常運転と80%以 上の稼働率の確保

「安全」をどう考えるか

- 原子力発電(核分裂)と違い、何かあれば「止まる」
 - ▶ コイル/レーザー、真空ポンプ、加熱機器、燃料供給機器どれが 止まってもプラズマは消える
 - ▶ 加熱、燃料供給が過剰でもプラズマが不安定化し最終的に消滅
 - ▶ プラズマ内に空気・冷却材が混入してもプラズマは消える


- 最も大事なのは従事者と周辺住民の放射線防護
 - ▶ 放射能を有するものを「閉じ込める」
 - ➤ 核融合炉で大事なのは「トリチウム」「放射化ダスト」「放射化 腐食生成物」の3つ

「安全設計」は一筋縄ではいかない

- リスク=ハザードの発生確率×損害規模
 - ▶ 放射性物質を飛散させる可能性が高い(放射性物質が多い、高圧などエネルギーが大きい)部分を優先的に検討
 - ▶ 起こり得る事象(冷却材喪失、電源喪失など)を分析し、影響を 評価、対策を検討
- ある程度設計が進まないと評価ができないが、評価結果は設計 自体に大きく影響を与える(ニワトリかタマゴか)
- 「安全第一」だが、それだけでいいわけではない
 - ▶ 装置の保全・早期の再起動も求められる
 - ▶ 過剰な安全対策は建設・運用コスト増に
 - ▶ 安全と安心は違う(安心の定量化は可能か?)

・全ての専門家にならなくて良いが、全ての専門家と話せるよう になることが望ましい。

常に広い視野を持って

核融合に関わるパスは 数多く存在

公的研究機関・大学だけでなく、 スタートアップ企業など民間でも 核融合炉開発が行われる時代に

- 国内スタートアップ:6社
- 核融合産業協議会(J-Fusion) 参画企業:100社以上
- 原型炉設計合同特別チーム 参画企業:30社以上

モノづくりはもちろんのこと、あ らゆる分野が関係

どんな分野の進展・イノベーションも 核融合に役立つ

- 特殊材料、大型・精密加工、高性能・ 高信頼部品、遠隔・複雑動作機器、 シミュレーション、計測・検査、...
- 規格・基準策定、安全評価、法整備、 保守・保全、経済性分析、サイエンス コミュニケーション、...

幅広く人と関わり、情報を集め、核融合エネルギーが本当に 必要なのかも見極めてほしい

人類は核融合で進化する Helical Fusion