

Internal Transport Barriers in the DIII-D Tokamak

by E.J. Doyle

Dept. of Electrical Engineering and PSTI, University of California, Los Angeles, California

For the DIII-D Research Team

Presented at the 12th International Toki Conference and 3rd General Scientific Assembly of the Asia Plasma Fusion Association, Toki, Japan

December 11-14, 2001

MOTIVATION — IMPORTANCE OF ITB RESEARCH

• Obtaining ITBs with large radius and barrier width leads to:

 Higher fusion performance

TIONAL FUSION FACILI SAN DIEGO

- Assist in obtaining significant fusion gain (Q~10) in Next Step burning plasmas
- Improved MHD stability limits
- ★ More compact and/or economic powerplants

- Improved bootstrap current alignment
 - ★ Assist in achieving steady-state tokamak operation

- Significant progress on DIII-D in addressing critical issues for ITB research:
 - Improved understanding of physical mechanisms responsible for ITB formation
 - **★** Evidence for a range of turbulence/transport reduction mechanisms
 - -New Quiescent Double Barrier (QDB) regime provides sustained, high quality ITB operation with an ELM-free H-mode edge, allowing us to examine:
 - ★ Edge-core integration issues, e.g. effect of ELMs
 - ★ ITB sustainment
 - ★ Impurity accumulation
 - -MHD stability will determine ultimate performance limit of ITB plasmas
 - ★ Stabilization of resistive wall modes (RWM) and neoclassical tearing modes (NTM) demonstrated on DIII-D. Invited talk by on RWM results by M. Okabayashi, Wednesday

UNDERSTANDING OF ITB FORMATION CONDITIONS FLOWS FROM UNDERSTANDING OF TRANSPORT DRIVE AND SUPPRESSION MECHANISMS

Indicative turbulence scales	$\frac{0.1}{1.} \frac{k_{\theta}\rho_{s}}{k_{\theta} (cm^{-1})}$	1. 	10
Turbulence/ transport mechanisms	ITG TEM	ETG	
Affected transport channels	Ion thermal Momentum Electron part	icle lectron thermal	
Stabilization mechanisms	ExB shear Reversed magnetic shear (NCS) α-stabilization (Shafranov shift) Impurity injection		

- Theory-based modeling predictions for turbulence and transport drive and control mechanisms are compared to experiment
- DIII-D results indicate following turbulence control mechanisms can be effective:
 - $-\alpha$ -stabilization/Shafranov shift
 - -q profile
 - Growth rate reduction via impurity injection
 - -Sheared ExB flows (rotation)
- Direct evidence for ETG modes is lacking

$\alpha\mbox{-}\textsc{stabilization}$ and negative magnetic shear are predicted to reduce turbulence growth rates

- Theory calculations, e.g. Waltz et al, Phys Plasmas 1997, indicate that turbulence growth rates can be reduced by negative magnetic shear and α-stabilization (Shafranov shift)
 - -Where α is the normalized pressure gradient (ballooning parameter)
- In comparisons to theory, extensive use is made of the GLF23 transport model
 - Drift-wave based model (ITG, TEM, ETG), providing quasilinear estimates of transport
 - Includes ExB shear, α -stabilization, magnetic shear and dilution effects
- ExB shear predicted to suppress turbulence when the shearing rate ω_{ExB} exceeds the turbulence linear growth rate γ

EVIDENCE FOR ROLE OF α -STABILIZATION PROVIDED BY ELECTRON THERMAL ITBS OBTAINED WITH LOCALIZED ECH

10.6

SIMULATIONS INDICATE α -STABILIZATION **IS CRITICAL IN FORMATION OF ELECTRON ITB**

• Results also provide indirect evidence

• Dynamical simulations using GLF23 for ETG modes: model maintain E-ITB only if $\boldsymbol{\alpha}$ is sufficiently large $-T_{e}$ gradient at location of E-ITBs consistently observed to be at -GLF23 also reproduces dynamics of marginal stability to ETG mode barrier evolution 30 99696, 0.20s 99696, 0.2 s Experiment a/L_{Te} **T**_e 5 Calculated if α=0、 Simulation 4 20 Calculated (GKS) a/L_{Te} ETG critical gradient keV Salar 2 10 Simulation with α =0 **Experiment** e-ITB 0년 0.0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 ρ ρ ATIONAL FUSION FACILI SAN DIEGO

SUBSTANTIAL EVIDENCE FROM MANY EXPERIMENTS FOR ROLE OF q-PROFILE IN FACILITATING ITB FORMATION

- On DIII-D, use of strong negative shear, plus high heating power results in ITBs in all four transport channels
- Without strong negative shear, ITBs on DIII-D often limited to ion thermal and angular momentum channels

IMPURITY DILUTION CAN REDUCE TURBULENT TRANSPORT BY REDUCING GROWTH RATES AND INCREASING ExB SHEAR

- Results from neon injection into co-NBI plasma with L-mode edge, no prior ITB
- Results explain physics of RI-mode:
 - Linear growth rates reduced and ExB shearing rate increased
 - Density fluctuations dramatically reduced
 - Core temperatures rise, energy confinement and neutron rate double, profiles broaden

EXB SHEAR FLOW IS MOST STUDIED TRANSPORT BARRIER FORMATION MECHANISM (EDGE AND CORE)

 Occurrence of steps sometimes correlates with presence of rational q values

INTERPLAY OF TERMS IN Exb Shearing rate $\omega_{\text{E}\times\text{B}}$ is different for CO- and counter-NBI

• Main ion shearing rate $\omega_{E \times B}$ can be separated into pressure and rotation terms

$$\boldsymbol{\omega}_{\mathsf{E}\times\mathsf{B}} = \boldsymbol{\omega}_{\mathsf{E}\times\mathsf{B}}^{\nabla\mathsf{p}} + \boldsymbol{\omega}_{\mathsf{E}\times\mathsf{B}}^{\mathsf{rotation}}$$

- With counter-NBI, increasing the pressure gradient component increases $\omega_{E\times B}$, rather than reducing it, as with co-injection
 - Counter-NBI favorable for ITB expansion with L-mode edge
 - Counter-NBI experiments led to discovery of Quiescent Double Barrier (QDB) regime

EJD Toki 2001 12/14/2001 11

QUIESCENT DOUBLE-BARRIER (QDB) OPERATION

• Will examine:

- Performance obtained in QDB regime
- Significance of QDB results
- Transport and fluctuation analysis and modeling
- Impurity issues

• Some new acronyms:

- QH-mode: Quiescent H-mode
 - **★** An ELM-free H-mode with density and radiated power control
- QDB: Quiescent Double Barrier
 - ★ Operation with an internal transport barrier (ITB) inside a QHmode edge

QDB REGIME OBTAINED USING COUNTER-NBI — COMBINES ITBS WITH ELM-FREE QUIESCENT H-MODE EDGE

 Edge pedestal elevates central temperatures, improving fusion performance

COMBINATION OF CORE ITB AND QH-MODE EDGE RESULTS IN SUSTAINED HIGH PERFORMANCE PLASMAS

WHAT IS THE SIGNIFICANCE OF QDB OPERATION?

- H-mode is the operating regime of choice for next-step devices, but has nonoptimal features due to the impact of Edge Localized Modes (ELMs)
 - -Pulsed heat loads to the divertor can cause rapid erosion
 - Type I (Giant) ELMs can inhibit or destroy the ITBs desired for advanced tokamak (AT) scenarios
 - ★ Double barriers have been achieved on JT-60U and JET
- QDB plasmas address critical next-step and ITB issues:
 - Provides high quality ELM-free H-mode, eliminating pulsed divertor heat loads
 - The QH-mode edge is compatible with ITBs
 - -Sustained long pulse, high performance capability:
 - \star >3.5 s or 25 $\tau_{\rm E}$ achieved, limited only by beam pulse duration
 - \star $\beta_{\rm N}H_{\rm 89}$ =7 for 10 $\tau_{\rm E}$
 - Long pulse capability provides opportunity to study impurity accumulation issues in detail

TRANSPORT ANALYSIS CONFIRMS PRESENCE OF DOUBLE (CORE AND EDGE) TRANSPORT BARRIERS

Core transport is similar to that in ITB plasmas with an L-mode edge

 ITB refers to region of reduced transport relative to L-mode

Edge transport is typical of H-mode

- Edge transport is typical of H-mode
- Core and edge barriers are kept separate by region of low ExB shear

SIMULATIONS USING THE GLF23 MODEL REPRODUCE THE QDB CORE ION BARRIER

• Steady-state simulation reproduces core ion temperature barrier

- Core T_e profile not accurately reproduced
- GLF23 also predicts core turbulence should not be completely suppressed, as ExB shearing rate and turbulence growth rate in approximate balance.

CORE BARRIER EXISTS WITHOUT COMPLETE TURBULENCE SUPPRESSION, IN AGREEMENT WITH GLF23 MODELING

- Internal broadband turbulence is not completely suppressed as the QDB core barrier evolves
 - Residual turbulence still significantly above the FIR scattering system detection limit
 - Contrasts with typical ITB in DIII–D, where core turbulence is suppressed to the noise floor
- High frequency coherent core modes are often detected.
 - Reflectometer data indicate these modes are localized to ρ ~0-0.4.

STEP SIZE FOR CORE TURBULENT TRANSPORT IS REDUCED IN QDB PLASMAS

 In L-mode, correlation lengths are observed to scale approximately as 5 –10 ρ_s

Where ρ_s is the ion

gyroradius evaluated using Te

- In QDB plasmas, core correlation lengths are significantly lower than the scaling observed in L –mode
- Initial modeling using the UCAN global gyrokinetic code tracks core experimental trends and magnitude
 - ITG turbulence in circular geometry

QDB DISCHARGES ALLOW US TO STUDY IMPURITY ACCUMULATION IN DIII-D ITB PLASMAS

• Nickel content increases with time, but contribution to radiated power is low, < 0.3 MW. Large impact on Z_{eff}

Low-Z impurities, e.g. carbon, stay approximately constant

NEOCLASSICAL MODELING PREDICTS CENTRAL PEAKING OF HIGH-Z IMPURITIES, DUE TO PEAKED n_e PROFILE

• Measured impurity convection and diffusivity is larger than neoclassical from 0.1 < ρ < 0.5

CONTROL TOOLS EXIST TO MODIFY DENSITY PROFILE AND REDUCE DENSITY PEAKING

- Example of use of central ECH to modify density profile
- n_e(o)/n_{AVE} decreases from 2.6 to 1.7
- MIST modeling indicates Ni concentration is reduced
- Reduced density peaking would also improve bootstrap current alignment

- DIII-D results have improved our understanding of ITB formation conditions
 - Evidence for the effect of α -stabilization/Shafranov shift, magnetic shear, impurity injection, and sheared ExB flows
- QDB results demonstrate that it is possible to have long pulse, high performance ITB operation with an ELM-free H-mode edge, with density and radiated power control
 - ->3.5 s or 25 τ_E achieved, limited only by beam pulse duration
 - $\beta_{\rm N}H_{\rm 89}$ =7 for 10 $\tau_{\rm E}$
 - -Pulsed divertor heat loads eliminated
 - -Core and edge transport barriers are compatible
 - Turbulence and transport behavior of QDB discharges is reproduced by initial simulations and modeling
 - Issues are increasing the operating density, impurity accumulation and obtaining QDB with balanced or co-NBI (JT-60U has unique capability!)

