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MOTIVATION —
IMPORTANCE OF ITB RESEARCH

● Obtaining ITBs with large radius and barrier width leads to:
—� Higher fusion �
�   performance

—� Improved MHD�
�   stability limits

—� Improved bootstrap �
�   current alignment
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★ � Assist in achieving �
      steady-state tokamak�
      operation

★ � Assist in obtaining significant �
      fusion gain (Q~10) in Next �
      Step burning plasmas

★ � More compact�
      and/or economic�
      powerplants
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OVERVIEW

● Significant progress on DIII-D in addressing critical issues for ITB research:

— Improved understanding of physical mechanisms responsible for ITB

formation

★ Evidence for a range of turbulence/transport reduction mechanisms

— New Quiescent Double Barrier (QDB) regime provides sustained, high quality

ITB operation with an ELM-free H-mode edge, allowing us to examine:

★ Edge-core integration issues, e.g. effect of ELMs

★ ITB sustainment

★ Impurity accumulation

— MHD stability will determine ultimate performance limit of ITB plasmas

★ Stabilization of resistive wall modes (RWM) and neoclassical tearing
modes (NTM) demonstrated on DIII-D. Invited talk by on RWM results by
M. Okabayashi, Wednesday



UNDERSTANDING OF ITB FORMATION CONDITIONS FLOWS
FROM UNDERSTANDING OF TRANSPORT DRIVE AND

SUPPRESSION MECHANISMS

● Theory-based modeling
predictions for turbulence and
transport drive and control
mechanisms are compared to
experiment

● DI I I-D results indicate following
turbulence control mechanisms
can be effective:

— α -stabilization/Shafranov
shift

— q profile

— Growth rate reduction via
impurity injection

— Sheared ExB flows (rotation)

● Direct evidence for ETG modes
is lacking
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α -STABILIZATION AND NEGATIVE MAGNETIC SHEAR
ARE PREDICTED TO REDUCE TURBULENCE GROWTH RATES

● Theory calculations, e.g. Waltz et al, Phys Plasmas 1997, indicate that turbulence
growth rates can be reduced by negative magnetic shear and α -stabilization
(Shafranov shift)

— Where α  is the normalized pressure gradient (ballooning parameter)

● In comparisons to theory, extensive use
is made of the GLF23 transport model

— Drift-wave based model (ITG, TEM,
ETG), providing quasilinear
estimates of transport

— Includes ExB shear, α -stabilization,
magnetic shear and dilution effects

● ExB shear predicted to suppress
turbulence when the shearing rate ωExB
exceeds the turbulence linear growth
rate γ
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EVIDENCE FOR ROLE OF α -STABILIZATION PROVIDED BY
ELECTRON THERMAL ITBs OBTAINED WITH LOCALIZED ECH

● E-ITB develops rapidly following
ECH onset

● Electron transport reduced
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SIMULATIONS INDICATE α -STABILIZATION
IS CRITICAL IN FORMATION OF ELECTRON ITB

● Results also provide indirect evidence
for ETG modes:

— Te gradient at location of  E-ITBs
consistently observed to be at
marginal stability to ETG mode

● Dynamical simulations using GLF23
model maintain E-ITB only if α  is
sufficiently large

— GLF23 also reproduces dynamics of
barrier evolution
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SUBSTANTIAL EVIDENCE FROM MANY EXPERIMENTS FOR
ROLE OF q-PROFILE IN FACILITATING ITB FORMATION

● On DIII-D, use of
strong negative
shear, plus high
heating power
results in ITBs in
all four transport
channels

● Without strong
negative shear,
ITBs on DIII- D
often limited to
ion thermal and
angular
momentum
channels
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IMPURITY DILUTION CAN REDUCE TURBULENT TRANSPORT
BY REDUCING GROWTH RATES AND INCREASING ExB SHEAR

— Linear growth rates reduced and
ExB shearing rate increased

— Density fluctuations dramatically
reduced

— Core temperatures rise, energy
confinement and neutron rate
double, profiles broaden

● Results from neon injection into co-NBI plasma with L-mode edge, no prior ITB
● Results explain physics of RI-mode: 5�
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ExB SHEAR FLOW IS MOST STUDIED TRANSPORT
BARRIER FORMATION MECHANISM (EDGE AND CORE)

● Self-consistent
dynamical modeling
using GLF23 can
explain details of step-
wise formation of ITBs
on DIII- D

— Steps are
generated by a
competition
between the ∇ P
and vφBθ
contributions to
Er and the ExB
shearing rate in
co-NBI discharges
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INTERPLAY OF TERMS IN ExB SHEARING RATE
ωE×B IS DIFFERENT FOR CO- AND COUNTER-NBI

● Main ion shearing rate ωE×B can be
separated into pressure and rotation terms

● With counter-NBI,  increasing the pressure
gradient component increases ωE×B, rather
than reducing it, as with co-injection

— Counter-NBI favorable for ITB
expansion with L-mode edge

— Counter-NBI experiments led to
discovery of Quiescent Double Barrier
(QDB) regime

ωE×B = ωE×B + ωE×B
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QUIESCENT DOUBLE-BARRIER (QDB) OPERATION

● Will examine:

— Performance obtained in QDB regime

— Significance of QDB results

— Transport and fluctuation analysis and modeling

— Impurity issues

● Some new acronyms:

— QH-mode: Quiescent H-mode

★ An ELM-free H-mode with density and radiated power control

— QDB: Quiescent Double Barrier

★ Operation with an internal transport barrier (ITB) inside a QH-
mode edge
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QDB REGIME OBTAINED USING COUNTER-NBI —
COMBINES ITBs WITH ELM-FREE QUIESCENT H-MODE EDGE

● Edge pedestal
elevates central
temperatures,
improving fusion
performance
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COMBINATION OF CORE ITB AND QH-MODE EDGE
RESULTS IN SUSTAINED HIGH PERFORMANCE PLASMAS

●  βNH89=7 for 10 τE
(1.6 s)

● Duration limited by
NBI sources

● Have maintained
QH-mode for >3.5
s, ~25τE

● Feature of
QH-mode is ELM-
free operation
with density and
radiated power
control

— Density
controlled
using divertor
pumping
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WHAT IS THE SIGNIFICANCE OF QDB OPERATION?

● H-mode is the operating regime of choice for next-step devices, but has non-
optimal features due to the impact of Edge Localized Modes (ELMs)

— Pulsed heat loads to the divertor can cause rapid erosion

— Type I (Giant) ELMs can inhibit or destroy the ITBs desired for advanced
tokamak (AT) scenarios

★ Double barriers have been achieved on JT-60U and JET

● QDB plasmas address critical next-step and ITB issues:

— Provides high quality ELM-free H-mode, eliminating pulsed divertor heat loads

— The QH-mode edge is compatible with ITBs

— Sustained long pulse, high performance capability:

★ >3.5 s or 25 τE achieved, limited only by beam pulse duration

★  βNH89 =7  for 10 τE

— Long pulse capability provides opportunity to study impurity accumulation
issues in detail
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TRANSPORT ANALYSIS CONFIRMS PRESENCE OF DOUBLE
(CORE AND EDGE) TRANSPORT BARRIERS

● Core transport is similar to that in ITB plasmas with an L-mode edge

— ITB refers to region of reduced transport relative to L-mode

● Edge transport is typical of H-mode

● Core and edge barriers are kept separate by region of low ExB shear
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SIMULATIONS USING THE GLF23 MODEL
REPRODUCE THE QDB CORE ION BARRIER

● Steady-state simulation reproduces core ion temperature barrier
— Core Te profile not accurately reproduced

● GLF23 also predicts core turbulence should not be completely
suppressed, as ExB shearing rate and turbulence growth rate in
approximate balance.
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CORE BARRIER EXISTS WITHOUT COMPLETE TURBULENCE
SUPPRESSION, IN AGREEMENT WITH GLF23 MODELING

● Internal broadband turbulence is not
completely suppressed as the QDB
core barrier evolves

— Residual turbulence still significantly
above the FIR scattering system
detection limit

— Contrasts with typical ITB in DIII–D,
where core turbulence is
suppressed to the noise floor

● High frequency coherent core modes
are often detected.

— Reflectometer data indicate these
modes are localized to ρ~0-0.4.
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STEP SIZE FOR CORE TURBULENT
TRANSPORT IS REDUCED IN QDB PLASMAS

● In L–mode, correlation �
� lengths are observed to �
� scale approximately as�
� 5 –10 ρs

● In QDB plasmas, core�
� correlation lengths are�
� significantly lower than the �
� scaling observed in L –mode

● Initial modeling using the �
     UCAN global gyrokinetic �
     code tracks core �
     experimental trends and �
     magnitude
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QDB DISCHARGES ALLOW US TO STUDY IMPURITY
ACCUMULATION IN DIII-D ITB PLASMAS

● Nickel content increases with time, but contribution to radiated power
is low, < 0.3 MW. Large impact on Zeff

● Low-Z impurities, e.g. carbon, stay approximately constant
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NEOCLASSICAL MODELING PREDICTS CENTRAL
PEAKING OF HIGH-Z IMPURITIES, DUE TO PEAKED ne PROFILE

● Measured impurity convection and diffusivity is larger than neoclassical
from 0.1 < ρ < 0.5
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CONTROL TOOLS EXIST TO MODIFY
DENSITY PROFILE AND REDUCE DENSITY PEAKING

● Example of use of
central ECH to
modify density
profile

● ne(o)/nAVE

decreases from 2.6
to 1.7

● MIST modeling
indicates Ni
concentration is
reduced

● Reduced density
peaking would also
improve bootstrap
current alignment
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CONCLUSIONS

● DI I I-D results have improved our understanding of ITB formation conditions
— Evidence for the effect of α -stabilization/Shafranov shift, magnetic shear,

impurity injection, and sheared ExB flows

● QDB results demonstrate that it is possible to have long pulse, high
performance ITB operation with an ELM-free H-mode edge, with density and
radiated power control

— >3.5 s or 25 τE achieved, limited only by beam pulse duration

— βNH89 =7  for 10 τE

— Pulsed divertor heat loads eliminated

— Core and edge transport barriers are compatible

— Turbulence and transport behavior of QDB discharges is reproduced by
initial simulations and modeling

— Issues are increasing the operating density, impurity accumulation and
obtaining QDB with balanced or co-NBI (JT-60U has unique capability!)


