

Recent Development of LHD Experiment

O.Motojima for the LHD team National Institute for Fusion Science

Primary goal of LHD project

- 1. Transport studies in sufficiently high $n\tau_{\rm E}T$ regime relevant to reactor condition.
- 2. MHD studies beyond β of 5%.
- 3. Fundamental research for steadystate operation with employing divertor.
- 4. Confinement studies on high energetic particles and simulation experiments of alpha particles
- 5. Complimentary study to tokamaks leading to comprehensive understanding of toroidal plasmas.
- 6. Reactor technology, in particular, superconducting system, high heat flux components, and structural material.

Heliotron configuration with employing

Large Helical Device (LHD)

Dimension R/a = 3.9/0.6 m Magnetic field 2.9T

\Rightarrow Exploration of Low ρ^* and ν^* , and High β plasmas

⇒ New perspective of attractive fusion reactor by net current-free plasmas

Maximum achieved parameters

Line-averaged density Energy confinement time Plasma stored energy Electron temperature Ion temperature Volume-average beta Discharge duration

 $\begin{array}{rcrc} 1.5 \times 10^{20} \mathrm{m}^{-3} \\ \tau_{\mathrm{E}} & 0.36 \mathrm{~s} \\ W_{\rho} & 1.03 \mathrm{~MJ} \\ T_{e}(0) & 10 \mathrm{~keV} \\ T_{i}(0) & 3.9 \mathrm{~keV} \\ <\beta > & 3.0 \ \% \\ & 127 \mathrm{~s} \end{array}$

Present experimental specifications of LHD

LID main experimental nam

Steady Progress of Plasma Performance (I)

Comparison of achieved maximum parameters

2	Tokamaks	Helical systems other than LHD	LHD
Ion temp. (keV)) 45 (JT-60U•J)	1.6 (Heliotron E•J)	3.9
Electron temp. (keV)	25 (ASDEX-U•FRG) 15 (JT-60U•J)	6.1(W7-AS•FRG)	10
Density (10 ²⁰ m ⁻³)	20 (AlcatorC•US) 2.7 (JT-60•J)	3.0 (W7-AS•FRG)	1.5
Beta (%)	40 (START•UK)	3.0 (W7-AS•FRG)	3.0
Energy conf. time (s)	1.2 (JET•EU) 1.1 (JT-60U•J)	0.055 (W7-AS•FRG)	0.36
Fusion triple product (10 ²⁰ m	15 (JT-60U∙J) ⁻³ ∙s∙keV)	0.035 (W7-AS•FRG)	0.22
Stored energy (MJ)	11 (JET•EU) 10.9 (JT-60U•J)	0.015 (W7-AS•FRG)	1.03

LHD is extending the frontier on steady-state plasmas

Accumulation of Database for Stellarators (1)

International stellarator database

Nucl. Fusion 36 (1996) 1063

- Description and format in conformity of ITER DB.
- Scalar data only

International Stellarator Scaling 95 (ISS95) $\tau_{E}^{ISS95} = 0.26B^{0.80}P^{-0.59}\overline{n}_{o}^{0.51}R^{0.65}a^{2.21}q_{2/3}^{-0.40}$ $\propto \tau_{R} \rho_{*}^{-0.71} \beta^{-0.16} \nu_{*}^{-0.04}$

Performance of LHD plasma depends on the position of magnetic axis

New finding of breakthroughs on confinement

Successful suppression of neoclassical helical ripple transport by geometrical optimization

← Keep good confinement down to v_{b}^{*} of 0.05 by inward shift of magnetic axis

ISS95 $\tau_{E}^{exp}/\tau_{E}^{ISS95}$ ~1.5 is robust towards β of 3% in R_{ax}=3.6m

<u>Good confining property observed in</u> 4521 <u>Unfavorable configuration from</u> 14 linear theory on MHD instabilities

Information from Pressure gradient and MHD activities in high β discharge

(around 1 ≠ 0.5)

- Observed pressure gradient at ρ=0.5 is predicted to be Mercier unstable even from low beta value of 0.5%. However, the pressure gradient increases as beta.
- It is suggested that the plasma enters the second stability region over <β_{dia}> ~ 2.3% by beta effect (forming magnetic well).
- n/m=1/2 mode appears from 0.3% to 2.3% where the region is Mercier unstable, and it disappears when the plasma enters the second stability.

Observation of Internal Transport Barrier in LHD

Electron root plasma

Central ECH is applied to NBI plasma with low collisionality in the electron root

Bifurcation phenomena Internal Transport Barrier (ITB) appears when the ECH power exceeds the threshold

Confinement improvement Slow decay of T_e after ECH turned-off shows the lower χ_e inside the ITB

Plasma heated by NBI

Plasma heated by ICRF

Plasma discharges have been prolonged to 80 s by NBI(0.5 MW) and 120 s by ICRF(0.8 MW).

Temperature, density, radiation, and emission from impurities are almost constant during a discharge.

Carbon divertor plates have enabled us high density operation.

Next goal 10⁴ sec Steady state operation by ICRH

		01
ID	9スク名	Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr
1	Pump-down of V.V. & cryostat	07/26 L 03/08
2	Preliminary leak check	07/30 0108/02
3	Baking V.V.	08/02 08/09
4	Leak check	08/09 108/12
5	Pressurization test of pipes	08/12 08/14
6	Purification of cryogenics	08/02 08/12
7	Cooling down	08/15 09/11
8	Steady-state cooling	09/11
9	Warming-up	02/15 03/08
10	Coil excitation test	09/11 09/14
11	Engineering experiments	11/26 11/30
12	Baking & Glow D.C. of V.V.	09/14 09/17
13	Plasma experiments:1st run	09/18
14	Plasma experiments:2nd run	12/04 12/27
15	Plasma experiments:3rd run	01/08 02/15
16	Pause of experiments	12/27 01/07
17	Venting of V.V. & cryostat	03/08

Plan in 5th Experimental Campaign (Sep.2001-Feb.2002)

4501

Major objectives

Production of high-temperature

& high-β plasmas Clarification of confinement physics

Targets (Achievements)

Plasma performance

Temperature 100 million °C

(120 million[°] C)

Stored energy 1.5 MJ (1.03 MJ)

Heating power

NBI	9	MW	(7 MW)
ECH	1.5	MW	(1.7 MW)
ICH	3	MW	(2.7 MW)

Magnetic field

2.976 T @ Rax=3.5 m

Research subjects

Confinement Scaling law Transport barrier Role of electric field Magnetic island effect MHD in high- β regime Equilibrium Stability Long pulse discharge Particle control Real-time control of magnetic field Density control Pellet injection **Density** limit Radiation collapse Impurity effect Edge plasmas & Divertor

Summary

- 1. LHD is opening new perspective towards attractive fusion reactor by net current-free plasmas.
- 2. Complementary role to tokamaks

Major physics should be common for toroidal plasmas.

- No net currents, Reversed shear
 - → Intrinsic suppression of neoclassical tearing mode
- Density limit
- No disruption
- 3. New findings as well as performance improvement have extended frontiers.
- 4. More than one minute long operation with maintaining performance is easy (10000-s demonstration in plan)

Unique contribution to steady-state related issues.

<u>Near term plan (2001-2002)</u>

- Increase heating resources
- Active particle control by Local Island Divertor

Long term plan : Second experimental phase (2008-)

- Deuterium operation
- Magnetic field of 4 T by superfluid He cooling
 Closed divertor system 4521
- Closed divertor system

Contributions to ITC-12/APFA'01 from the LHD Team

- 1. Invited Talks
- (1) Impact of energetic-ion-driven global modes on toroidal plasma confinements

by K.Toi on Wed.

(2) Role of radial electric field shear at the magnetic island in the transport of plasmas

by K.Ida on Thu.

- (3) Study of time evolution of toroidal current in LHD by K.Y.Watanabe on Fri.
- 2. Posters on Tue. & Wed.

Plasma experiment	25 papers
Theory	6 papers
Engineering/Technology	4 papers

3. NIFS Tour

In the afternoon on Thursday (Dec.13)