RESISTIVE WALL MODE CONTROL ON THE DIII-D DEVICE

OKABAYASHI Michio¹, BIALEK James², CHANCE Morrell¹, CHU Ming³, FREDRICKSON Eric¹, GAROFALO Andrea², HATCHER Ronald¹, JENSEN Torkil³, JOHNSON Larry¹, LA HAYE Robert³, NAVRATIL Gerald², LAZARUS Edward⁴, SCOVILLE John Tim³, STRAIT Edward³, TURNBULL Alan,³ WALKER Michael,³ and the DIII-D Team

- 1. Princeton Plasma Physics Laboratory
- 2. Columbia University, New York, New York
- 3. General Atomics, La Jolla, California
- 4. Oak Ridge National Laboratory, Oak Ridge, Tennessee

Joint Conference of the 12th International Toki Conference and The 3rd General Scientific Assembly of Asia Plasma and Fusion Association on "Frontiers in Plasma Confinement and Related Engineering/Plasma Science" December 11-14, 2001, Ceratopia Toki, Toki, Gifu, Japan

SUCCESSFUL RESISTIVE WALL MODE (RWM) CONTROL IS A PREREQUISITE FOR SUSTAINING IGNITION IN REACTOR ORIENTED DEVICES - HIGH β_n PROVIDES HIGH BOOTSTRAP CURRENT CONFIGURATION

TIONAL FUSION FACILIT SAN DIEGO

294-01/jy

OUTLINE

Introduction

- RWM characteristics
- Two RWM control approaches

Plasma rotation and magnetic feedback

- Recent RWM control experiments
 - Magnetic feedback compensates residual error field, increasing rotation and plasma pressure
- Achievement
 - Normalized Beta β_n reached twice the no-wall limit, $\beta_n^{no-wall}$
 - β_n is near the ideal-wall β_n limit, $\beta_n^{\text{ideal-wall}}$
- Improvement of RWM physics
 - Discovery of error field amplification (EFA)
- Modeling
- Future plan
- Summary

RESISTIVE WALL MODE - AN EXTERNAL KINK BRANCH WITH RESISTIVE WALL

294-01/jy

RWM CHARACTERISTICS PREDICTED BY THEORY

EXPERIMENT SHOWS THAT THE RW MODE STRUCTURE EXTENDS FROM PLASMA CORE TO OUTSIDE THE VACUUM VESSEL

SXR at two toroidal locations separated by 150°

TWO DISTINCT APPROACHES FOR RWM CONTROL HAVE BEEN PROPOSED

PLASMA ROTATION DELAYS RWM ONSET

A decrease in rotation with $\beta_n > \beta_n^{no-wall}$, leading to rapid RWM growth Small amplitude RWM near threshold may cause rotational drag

RWM MAGNETIC CONTROL HARDWARE ON DIII-D

INTERNAL LOOPS ARE MORE EFFECTIVE THAN EXTERNAL LOOPS

- Comparison of δ Br loops with smart shell logic
 - Experiment agrees with theoretical predictions
 - Ip ramp is used to maintain no-wall β_n limit roughly constant in time

δBp "MODE CONTROL" IS FAR SUPERIOR TO δBr "SMART SHELL LOGIC"

 Plasma rotation was well maintained over a longer duration in spite of lowering edge-q

HIGH $\beta_{\textbf{n}}$ DURATION WAS EXTENDED BY > 500 ms

 β_n reached twice the $\beta_n^{no-wall}$, close to β_n ideal-wall (GATO-code) MHD at collapse is ideal kink like behavior

FEEDBACK COMPENSATES RESIDUAL ERROR FIELD

- Preprogramming coil currents without feedback, matched to currents with feedback, produce similar β_n and rotation

ERROR FIELD AMPLIFICATION (EFA) INCREASED AT $\beta_n > \beta_n \text{ no-wall}$

• Helical resonance to non axi-symmetric magnetic field

TWO PROCESSES: ROTATIONAL STABILIZATION AND MAGNETIC FEEDBACK HAVE BEEN UNIFIED IN A SYNERGISTIC MANNER, OPENING A PATH TO IDEAL-WALL β_n LIMIT

LUMPED PARAMETER FORMULATION

- Explicit Presentation of Boundary Condition

EFA RESPONSE TO PULSED FIELD IS QUALITATIVELY CONSISTENT WITH MODEL ESTIMATE

EXPERIMENTS SUPPORT "RIGID DISPLACEMENT" MODE STRUCTURE

• Simplify model development of RWM like Lumped parameter formulation and VALEN code

PROPOSED IMPROVEMENT OF RWM FEEDBACK ON DIII-D

Additional six upper- and six lower- coils and internal Bp sensors increase achievable β very close to ideal-wall β limit (VALEN CODE / no rotation)

SUMMARY

RWM control

- Two schemes, rotational stabilization and magnetic feedback, previously considered distinct, now function as a unified process in a synergistic manner
- Feedback process tracks and compensates the residual error field, maintains the rotation, and achieves high β_n
- A key to this success is the use of Bp sensors inside the vessel and mode control logic
- High β_n condition is also achievable with optimized error field correction without feedback

High β_n achievement

Achievement of twice the no-wall β_n limit close to ideal-wall β_n limit consistent with experimental MHD observation

Understanding of RWM physics

• Greatly improved by the discovery of Error Field Amplification

Future plans

• New coils will be installed for achieving high β_n over wide parameter ranges

