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Fusion physics: 107 - 108 oC

Partial ionization

MTF

1 bar
106 bar

1012 bar



Maximum pressure depends 
upon technology

� Superconducting magnets (steady state)
B < 15 Tesla
p  < βB2 ~ 100 atmospheres

� Liner technology (pulsed)
B ~ 200 Tesla
p ~ βB2 ~ 106 atmospheres

� Laser compression (pulsed)
p ~ 1011 atmospheres



Liner technology

107 amps
< 10 µs

Bθθθθ ~ 100 tesla (40,000 atmospheres)

�Liner� is thin-walled 
aluminum cylinder



Radiograph of liner implosion

Stationary 6-mm probe 
jacket

Elastic-plastic deformed 7-mm 
thick liner at 12:1 radial 
compression

Flash xrays

Side-on view
of liner moving
4 mm/µs

Initial 1-mm thick
Aluminum liner



How might MTF be done?

Pulsed current
~ 107 A

Thin metal
wall implodes

0.5 m



MTF requires energy to preheat the 
target and separately to implode the liner

Target formation 
and preheating

Liner implosion

~ 10-100 MJ

~ 0.1-1.0 MJ



Los Alamos FRX-L experiment
3 meters

100-kV, 200-kJ
Capacitor bank

Current collector
plate

Theta-pinch coil
36-cm long;
12-cm diameter

Predict
n ~ 1017 cm-3

T ~ 300 eV



Shiva Star liner implosion (Qeff ~ .01)
80 kV, 5 MJ



The Field Reversed 
Configuration



End-on FRC interferogram

R. Siemon et al.,
Fusion Tech. 9, 13 (1986)

M. Tuszewski,
Nuc. Fusion 28, 2033 (1988)
with 416 references.



Time history of interferograms



Equilibrium theory up to E ~ 5

E = L / 2rs

rs

L / 2

<β> = 1 � xs
2/2

xs = rs / Rwall

Conducting boundary



Stability appears to depend upon elongation
FRC Operating Regime
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Profile of long FRC determined by equilibrium alone
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Combining p = p(ψ) with uniform elongation (∂/∂z << ∂/∂r) 
gives solution

Depends on: open p ; elongation ; shape
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6 curves essentially 
the same

D.C. Barnes, Phys. Plasmas 8, 4864 (2001)



Stability with Hall terms agrees with 
empirical good parameter regime*
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Empirical analysis (Tuszewski) shows S*/E < 3.5 
for good plasma flux confinement.

Theory shows S*/E < 2 - 4 for stability

*D. C. Barnes, Phys. Plasmas, accepted Nov. 2001



Los Alamos FRX-L team

Goal: Compress an FRC inside 
a liner to achieve T ~ 10 keV



Los Alamos Atlas facility (Qeff ~ 1)

240 KV
25 MJ



Summary of introductory points

�The field-reversed configuration provides one method
to position 300-eV plasma inside a conducting cylinder

�Recent theoretical work suggests that the long-standing 
paradox of FRC stability might now be resolved

�Liner implosions with 10:1 radial compression are feasible
B ~ 50 kG     → ~ 5 x 106 G 
P  ~ 100 bar  → ~ 106 bar (1 bar = 1 atmosphere)

�One should ask: Why is this important to fusion research?



α = dR/R

RxR
dR

Pusher material
with density ρ

10 keV 
plasma 
mixed with 
magnetic 
field

High pressure cavity

B nT

r



Lawson triple product requirement

½ n2 <σv> Ef ≥≥≥≥ 3nT/τE    ; ρρρρ = n mi

nTτE  ≥≥≥≥ 6T2/ <σv> Ef

Temperature and fusion cross section σ
determine required product of pressure 
and energy confinement time 



System size tends to decrease as 
pressure increases

Suppose τE is determined by thermal 
diffusivity; then size must be large enough 
to meet Lawson condition:

τE = a2/χ

Define an engineering β = nT / P  

a = sqrt(τE χ) = sqrt(nTτE χ/β) / sqrt(P)



Variation of size with pressure depends upon 
specific loss processes

103

1

10-3

10-6

Fu
el

 M
as

s 
(g

ra
m

s)

Diffusion-limit
Zero magnetic
field

NIF

Approximate
Upper-limit �Bohm�

Advanced 
concepts

ITER

Diffusion-limit
�classical� magnetic confinement

MTF

Fu
el

 E
ne

rg
y 

(jo
ul

es
)

106

109

103

106103 109

Pressure (atm.)



Dwell time
Pressure (P) lasts for a  pulse time τ
limited by inertia of liner (density ρ). 

τ = dR / (P/ρ)1/2

Pulse duration τ must separately satisfy 
the Lawson condition.



Liner kinetic energy and power
Can show:

E = Eplasma + Efield = (1+βx2/2) PV

Kinetic Energy is related to E by an 
efficiency ε

KE = E/ ε

Characteristic Power = E / τ



Cost estimate
State-of-the-art pulsed power devices:

NIF  $6 / megawatt
Z machine  $3 / megawatt
Atlas $12 /  megawatt

Adopt $1/joule and $10 / megawatt for this 
type of pulsed-power supply

Make estimate:

MTF cost ($) = $1 * KE(J) + $10 * Pwr(MW)



Generic MTF facility cost vs. pressure
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Energy confinement � specific targets

ICF: electron  thermal conduction
χ = λ ve 

λ = m.f.p., 
ve = elec. thermal speed

Field Reversed Configuration: empirical scaling

χ = ρi vo
ρi = ion gyro radius
vo = 4x106 cm/s

Wall-confined Bohm thermal conduction

χ = ρi vi / 16



Facility costs - specific plasma targets
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Wall-confined Bohm-like plasma

α = dR/R

R

dR

Pusher material
with density ρ

10 keV plasma 
mixed with 
magnetic fieldL ≈ R



Computations show wall-confined 
plasma cools at acceptable rate

n

B

T

P

5x1019 cm-3

50 T 2x104 bar

1 keV
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Russian MAGO has wall-confined plasma

Nozzle action

Inverse pinch 
acceleration



Conceptual experiment
to study wall-confined plasma

Inverse pinch
current sheet

I

Insulator

Center-line

Aluminum

1 MA
~ 0.1 µs

Ground

5 cm

T ~ 0.5 keV
n ~ 1017 cm-3



Program plans
DOE Office of Fusion Energy Sciences Exploratory Research
� Develop FRC target plasma FY 2002-2003 $2-4 M / year
Proposed:
� Liner implosion Shiva Star FY 2003-2004 $4-6 M / year
� Liner implosion Atlas FY 2005-2008 $10-20 M / year

NASA Marshall Space Flight Center
� Plasma-gun implosion system FY 2002 � 2004 $2-3 M / year

Actual budgets in black
Anticipated budgets being proposed in red



Technical issues

� Plasma target formation, stability, and 
energy confinement at high density

� Wall-plasma interactions and impurity 
mixing with fusion fuel

� Gain limitations using batch-burn mode
� Practicality of pulsed operation



Conclusions
� MTF warrants exploration given its potential as a 

low-cost approach to fusion
� The cost results are derived from simple 

considerations and experience with pulsed-power 
facilities; not plasma physics.

� Plasma physics will determine the detailed behavior 
and ultimate optimization of an MTF system.

� Experimental facilities already exist that allow testing 
of many critical MTF issues

� This research is just beginning; interested scientists 
are encouraged to contact any of the authors (more 
information at http://fusionenergy.lanl.gov).


