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 A program goal is to understand the physics
specific to high beta and low aspect ratio

• Overview of operating scenarios, tools

• Neutral beam heating & transport

• Electron heating & transport

• The edge

Change the aspect
ratio, increase beta:
what physics
changes?



NSTX operational capabilities increasing, and allow
confinement studies to begin

Baseline        (Achieved)

Major Radius 0.85 m

Minor Radius 0.68 m

Elongation ≤ 2.2 (2.5)

Triangularity ≤ 0.6 (0.7)

Plasma Current
    1 MA            (1.4 MA)

Toroidal Field
    0.6 T            (≤0.45 T)

Heating and CD
   5 MW NBI      (5 MW)
   6 MW HHFW (6 MW)
   0.5 MA CHI       (0.4 MA)

Pulse Length
   ≤ 5 sec             (0.5 sec)



Local transport studies focus on understanding global trends
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ions

NBI & HHFW:  Electron 
channel dominates

NSTX

Heating puzzle with NBI

NBI: kθρi >> 1 dominant
        kθρi < 1 stable or 

       suppressed

Close to neoclassical
when measured



• NBI: 80 kV, deuterium

• HHFW: 30 MHz, 
12 strap antenna

• MPTS:   Te(R,t), Ne(R,t)
 10 ch., 60 Hz

• CHERS: Ti(R,t),Vφ(R,t)
 16 ch., 20 ms

• EFIT: Equilibrium

• TRANSP: Transport Analysis

• GS2: Gyrokinetic Analysis
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NSTX Systems, Diagnostics, Analysis Tools
Enable Study of Local Transport



Neutral beam heating yields high ion
temperatures in high current plasmas

L mode
1.2 MA, 0.33 T
4.8 MW NBI

• Ti >Te

• Ti broad

• Edge Vφ
pedestal

• Large Vφ:
   co-directed
   NBI

Ti Te
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Ion Thermal Confinement Better Than Electrons

1/3 PNB

2/3 PNB

βT ~23%

• Ti > Te

• Classical PNB 2:1
electrons:ions

• Peaked NB deposition



Power Balance Points To Puzzles

Power Source/Sink      ELECTRONS (MW)        IONS (MW)             NET (MW)

OHMIC Heating 1.2 0 1.2

BEAM Heating 2.77 1.42 4.19

i-e Coupling 2.73 -2.73 0

dW/dt 0.11 -0.54 -0.43

Other* -0.66 0.26 -0.4

NET POWER IN 6.15 MW -1.59 MW 4.56 MW

“Misplaced Heating” < -1.59 MW >1.59 MW 0.0   MW

NET POWER OUT < 4.56 MW > 0.0 MW 4.56 MW

*Beam Thermalization,
 Rotation, Radiation, Convection

More Power Out
 of Ions Than In!

Need Extra Ion Heating
 to Balance Power

TRANSP 106382A01 @ 0.25 s



• Ti consistently larger than Te , despite expected large
fraction of electron heating by beams
⇒   electron conduction is the dominant loss channel

• Power balance makes sense if

–  χi is exceptionally low

– Ions get more heat from fast ions than expected classically

• Diagnostic validation ongoing

• Non-classical effects in heating and Qie being explored

Summary of power balance with NBI



Astrophysics and observed MHD may hold one clue
to the power balance puzzle

• Theory of stochastic wave
heating of corona 
developed (White)

• Application of theory to ST
has begun

• Vbeam > VAlfven key

Gates, Gorelenkov, White

Fredrickson
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•  Being investigated:
    Compressional 
    Alfven 
    Eigenmodes

•  Modes excited
    by fast ions;
    waves transfer
    energy to 
    thermal ions

However, initial study suggests:
low Ebeam ⇒  no CAE modes observed,
but ion stored energy is still too high



• After neon puff, almost
no neon penetrates the
core until MHD event
near 260 ms

• Modelling suggests
core diffusivity < 1 m2/s,
near neoclassical
theory

Low ion particle transport consistent with
low ion thermal transport

D. Stutman

USXR
measurements of
He-, H-like neon lines

Signals from
difference of

similar plasmas
wtih and without

neon puff



Theory: short wavelength modes may dominate
transport, long wavelength modes may be suppressed

C. Bourdelle (PPPL), W. Dorland (U. MD)

=0.31

ExB
shearing 

rate

Growth rates, (Short λ)

(Long λ)

• Long λ, low k (ITG, TEM):
     growth rate < ExB shear rate

– Large λ associated with ion
thermal transport

– Low aspect ratio: Analysis
suggests ∇β  strongly stabilizing

• Low λ, high k (ETG):
growth rates large

– Responsible for electron thermal
transport?

– Non-linear simulations begun to
estimate possible fluxes
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High Harmonic Fast Wave (HHFW) Heats Electrons

Ne(0) = 4.0 ∞ 1019 m-3

Ip = 760 kA
Ne(0) = 1.5 ∞ 1019 m-3

Ip = 380 kA

Ti

Ti

Te Te

PRFPRF

• Te > Ti with auxiliary power to electrons



• Power deposition: HPRT ray
tracing code

•  χi ~ 2-2.5 χi NC ,    χe >> χi

106194  0.19 s

• ETG unstable

• Low kθ modes ITG +TEM

γ

γ

ρi

ρi

Electron Loss Channel Also Dominant with
HHFW Heating
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Power balance analysis reveals that reduced
electron transport is correlated with high Te

• Core χe drops as high Te

develops
– Steep gradients due to

transport changes, not
source

• Heating source from
HPRT ray tracing
(Rosenberg)
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Bifurcations to enhanced plasma confinement
state observed with both NBI and HHFW

Visible light, false color

H mode: Maingi, Bush (ORNL); LeBlancFast camera: Maqueda (LANL)

• NBI: Power required ~ 10x that
predicted from empirical scaling
laws:
– Strong magnetic shear?
– Poloidal damping? Wall neutrals?

• Change in edge
transport evident
in density profile

LeBlanc

• Fluctuations
reduced at
H mode
transition

Edge reflectometry:
Peebles, Kubota (UCLA)

Before transition After transition



• Helium puffed; emission
viewed along a field line

• He0 emission observed
with a fast-framing, digital,
visible camera
– 1000 frames/sec, 10 µs

exposure each frame

Imaging of edge reveals qualitative
differences in H- and L-mode turbulence

Los AlamosLos Alamos
NATIONAL LABORATORYNATIONAL LABORATORY

Maqueda, LANL; Zweben

pol .

rad.

• BOUT code: turbulence
modeling

– 2-fluid,3D Braginskii
equation code

Xu, LLNL



• Helium puffed; emission
viewed along a field line

• He0 emission observed with
a fast-framing, digital, visible
camera
– 1000 frames/sec, 10 µs

exposure each frame

Imaging of edge reveals qualitative
differences in H- and L-mode turbulence

Los AlamosLos Alamos
NATIONAL LABORATORYNATIONAL LABORATORY

Maqueda, LANL; Zweben

During H mode

After H-L
transition



HHFW-driven H modes found

• LSN

• Lower current (350 - 500 kA)

• He and D

• ELMy, ELM-free

•  βp = 1 observed
– Large bootstrap?
– Large dip in surface voltage

Starting scenario for future CD work?

Ip
HHFW
power

Loop
voltage

Dα

βp



Studies of underlying physics of ST transport
has begun

• Kinetic profiles are enabling initial local transport analysis

• NBI: Ti > Te, despite prediction that 2/3 PNBI goes to electrons
– Electrons are the dominant loss channel
– Ion heating not understood
– Low particle transport correlated with low ion thermal confinement
– ExB shear suppression of low k modes seen in analysis at high beta
– Exploring role of ETG

• HHFW: Te > Ti
– Electrons are the dominant loss channel

– Reductions in χe with strong central Te peaking

– Possible role of Te/Ti in determining χe to be investigated



Summary (2)
• L-H transitions observed with NBI and HHFW

– Turbulent structures observed in L mode state; modelling
underway

– Pth ~ 850 kW for NBI; ≈ similar-sized tokamaks, >> scaling
• Role of strong poloidal damping at low aspect ratio?

• Near-term transport goals and plans
– Understand ion heating
– Turbulence measurements to be extended into core
– Scans of beta: is beta or ∇β  favorable for transport?

• Long-term goals
– Establish a physics-based understanding of the underlying

causes of ST transport trends
• Comparison with moderate-aspect-ratio trends will reveal new

physics relevant to all


