December 14, 2001 ITC12

Status of ITER Project

Presented by T.Tsunematsu (EDA JA Home Team Leader) Japan Atomic Energy Research Institute

Reference Schedule of ITER Project

EDA: organization

(until July 1999)

World-Wide Cooperation in ITER/EDA

Efficient use of high speed link and information technology
Multi-national engineering and industries

Detailed Technical Objectives

Plasma Performance:

- to achieve extended burn in inductively driven plasmas with the ratio of fusion power to auxiliary power injected into the plasma Q>10 with an inductive burn duration between 300 and 500s,
- to aim at demonstrating steady-state operation using non-inductive current drive with Q>5,
- Controlled ignition should not be precluded.

Engineering Performance and Testing:

- demonstrate availability and integration of essential fusion technologies,
- test components for a future reactor,
- test tritium breeding module concepts; with a 14MeV neutron average power load on the first wall > 0.5 MW/m² and fluence 0.3 > MWa/m²,
- the option for later installation of a tritium breeding blanket on the outboard of the device should not be precluded.

ITER

Super-conducting Magnets

Major Specit	fications	
Fusion Power	: 500 MW	
Q Value	: >10	
Major Radius	: 6.2 m	
Minor Radius	: 2.0 m	
Plasma Current	:: 15 MA	
Magnetic Field		
Maximum	: 11.8 T	
Plasma Center	r: 5.3 T	

ITER Technology Development

Central Solenoid Model Coil (1)

Central Solenoid Model Coil (2)

Main Paramete	ers
Inner Diameter:	1.6m
Outer Diameter:	3.6m
Coil Height:	2.8m
Coil Weight:	110ton
Operating Current:	46kA
Magnetic Field:	13T

TF Insert

Expert Groups on ITER Physics R&D

1994 – 1999	1999 – 2001
Confinement and Transport	Transport and Internal Barrier
Physics	Physics
Confinement Database and	Confinement Database and
Modeling	Modeling
Edge Database and Modeling	Edge and Pedestal Physics
Scrape-Off Layer and	Scrape-Off Layer and
Divertor Physics	Divertor Physics
Disruptions, Equilibrium	MHD, Disruptions and
Control and MHD	Control
Fast Particles, Heating	Energetic Particles, Heating,
and Current Drive	and Steady State Operation
Diagnostics	Diagnostics

Operation Region of ITER

Fusion Power(MW)

Enhanced Operation Region

Long Pulse/Steady State Operation of ITER

Fusion Power (MW)

Reference Schedule of ITER Project

Possible Candidate Sites

Summary

- Through the collaboration among the JCT and EDA partners, the design and R&Ds has been successfully conducted.
- The technical basis toward the construction has been established.
- Negotiation among EU, JA, RF and Canada has been started aiming at the signature by the end of 2002.

Now, we are ready for ITER.