Alfvén range instabilities in H-1: Interpretation, mode structure, and relation to rational surfaces.

B. D. Blackwell, D.G. Pretty, J. Howard, D.R. Oliver, G. Potter, F. Detering, D. Byrne, M. Hegland, C.A. Nuhrenberg*, R.L. Dewar, S.T.A.Kumar, M. McGann, M.J. Hole and **J.H. Harris

Australian National University, *Max Planck IPP Greifswald, and **Oak Ridge National Laboratory

H-1 Heliac

MHD Data

Data mining

SVD, fluctuation structures

Clustering

Interpretation

Alfvén Scaling

lota an additional fit parameter

Radial location

Accurate iota confirmation

Scaling discrepancies

Beta-Induced modes, sound and drift modes

Helical Alfvén eigenmode

Radial Structure

Summary

H-1NF: National Plasma Fusion Research Facility

A Major National Research Facility established in 1997 by the Commonwealth of Australia and the Australian National University

Mission:

FACILITY

- Detailed understanding of the behaviour of magnetically confined hot plasma in the HELIAC configuration
- Development of advanced plasma measurement systems
- Fundamental studies including turbulence and transport in plasma
- Contribute to global research effort, maintain Australian presence in the field of plasma fusion power

Contract extended until 2010: includes some operational funding and limited collaborative funding

The facility is available to Australian researchers through the AINSE¹ and internationally through collaboration with Plasma Research Laboratory, ANU. ¹⁾ Australian Institute of Nuclear Science and Engineering

International collaboration played an important role in the success of H-1 in obtaining facility funding

H-1 Heliac: Parameters

3 period heliac: 1992 Major radius 1m Minor radius 0.1-0.2m Vacuum chamber 33m² excellent access Aspect ratio 5+ toroidal \leq 1 Tesla (0.2 DC) Magnetic Field 0.2MW 28 GHz ECH Heating Power 0.3MW 6-25MHz ICH Parameters: achieved to date::expected 3e18 :: 1e19 n

 $<200 eV(T_{e})::500 eV(T_{e})$

0.1 :: 0.5%

Т

β

ATIONAL

H-1 plasma configuration is very flexible

Santhosh Kumar Experimental confirmation of configurations

Rotating wire array

- 64 Mo wires (200um)
- 90 1440 angles

High accuracy (0.5mm) Moderate image quality Always available

Excellent agreement with computation

T.A. Santhosh Kumar B.D.Blackwell, J.Howard

Large Device Physics on H-1

Confinement Transitions,

Turbulence (Shats, 1996--)

- High Confinement mode ('96) _
- Zonal Flows 2001
- Spectral condensation of turbulence 2005

Magnetic Island Studies

- H-1 has flexible, controlled and verified geometry _
- Create islands in desired locations (shear, transform)

0.1

1600

Langmuir probes can map in detail

Alfvén Eigenmodes

May be excited in reactors by fusion alphas, and destroy their confinement

40

60

H-1

80

40

3

Ω

30

20

10

2800

Prf (kW)

Edge T e (eV

20

 $n_e (r/a = 0.3) (10 \ 17 \ m^{-3})$

(more)

t (ms)

2400

2000

Plasma Production by ICRF

ICRF Heating:

•B=0.5Tesla, $\omega = \omega_{CH}$ (f~7Mhz)

•Large variation in n_e with iota

D. Pretty, J. Harris Configuration scan: Magnetic Fluctuations

ICRF plasma configuration scan

RESEARCH

Mode spectrum changes as resonances enter plasma

No simple explanation for "gap" left side corresponds to zero shear at resonance

A clear connection with rational twists per turn – but what is it?

Resonant layer in plasma seems to aid formation or confinement.

pronounced in ECH.

Magnetic fluctuations

approach "high temperature" conditions: H, He, D; B ~ 0.5T;

- spectrum in excess of 100kHz
- Low mode numbers: m ~ 0 7, n ~ 0 9
- δb/**B** ~ 2e-4
- both broad-band and coherent/harmonic nature
- abrupt changes in spectrum randomly or correlated with plasma events

H, He, D; B ~ 0.5T; $n_e \sim 1e18; T_e < 50eV$ $\rho_{i,e} << a,$ $\lambda mfp >> \ell_{conn}$

Poloidal mode number measurements

Two "bean-shaped" 20 coil Mirnov arrays

- Phase vs poloidal angle is not simple
 - Magnetic coordinates
 - External to plasma
 - Propagation effects
 - Large amplitude variation

Significant *interpretation* problem in advanced confinement configurations

PLASMA

Identification with Alfvén Eigenmodes: ne

- Coherent mode near iota = 1.4, 26-60kHz, Alfvénic scaling with n_e
- m number resolved by bean array of Mirnov coils to be 2 or 3.
- $V_{Alfvén} = \frac{B}{\sqrt{\mu_{o}\rho}}$ $\propto \frac{B}{\sqrt{\eta_{e}}}$

PLASMA FUsion Research

FACILITY

- Scaling in $\sqrt{n_e}$ in time (right) and over various discharges (below)

H-1NF Data: MDSPlus + MySQL

D. Pretty

Mode Decomposition by SVD and Clustering

- Initial decomposition by SVD → ~10-20 eigenvalues
- Remove low coherence and low amplitude
- Then group eigenvalues by spectral similarity into fluctuation structures
- Reconstruct structures to obtain phase difference at spectral maximum
- Cluster structures according to phase differences (m numbers)
- → reduces to 7-9 clusters for an iota scan
- Grouping by clustering potentially more powerful than by mode number
 - Recognises mixtures of mode numbers caused by toroidal effects etc
 - Does not depend critically on knowledge of the correct magnetic theta coordinate

- 4 Gigasamples of data
 - 128 times
 - 128 frequencies
 - ²C₂₀ coil combinations
 - 100 shots

 Mode analysis of the clusters found is complex, but is consistent with the rotational transform

Identification with Alfvén eigenmodes: k_{II,} iota

1.50

RESEARCH

PLASMA

$$\omega_{\text{res}} = k_{\parallel} V_{\text{Alfvén}} = k_{\parallel} B / \sqrt{\mu_{o}\rho}$$

- k_{||} varies as the angle between magnetic field lines and the wave vector
- for a periodic geometry the wave vector is determined by mode numbers n,m
- Component parallel to B is $\propto \iota n/m$ $k_{\parallel} = (m/R_0)(\iota - n/m)$ $\omega_{res} = (m/R_0)(\iota - n/m) \frac{B}{\sqrt{\mu_0 \rho}}$
- Low shear means relatively simple dispersion relations

David Pretty Identification with Alfvén eigenmodes: k_{||,} iota

k h=0.76: Alfven (cyl;mu=2) res f vs. rho (kHz),n= 1, i

 $\omega_{\text{res}} = \mathbf{k}_{\parallel} \mathbf{V}_{A} = (m/R_0)(\iota - n/m) \frac{B}{\sqrt{\mu_0 \rho}}$

 $k_{||}\, \text{varies}$ as the angle between magnetic field lines and the wave vector 15 10 $k_{\parallel} \propto \imath$ - n/m ω_{GAE} iota resonant means $k_{\parallel}, \omega \rightarrow 0$ 5 Expect F_{res} to scale with δ iota 0 0.8 0.2 0.6 1.0 0.0 0.4 Resonant *i* rho (norm) x1e10 6 $\times \times \times f_M \times n_e^{1/2}$ = 4/31 $\lambda f_{GAE} \times n_e^{1/2}$ 5 $_{Hz imes cm^{-3/2}}$ 4 1.34 1.30 1.36 1.32 1.38 1.40

ıota →

PLASMA FUsion Research Facility

Carolin Nuhrenberg CAS3D: 3D and finite beta effects

ATIONAL

Blackwell, ISHW/Toki Conference 10/2007

Cross-power between n_e and Mirnov coils shows two modes coexisting

Probably at different radii as frequency is different, mode numbers the same

Blackwell, ISHW/Toki Conference 10/2007

Santhosh Kumar Accurate cross-check of iota

Potential to be iota diagnostic (if shear low)

Scaling discrepancies

phase

- $\omega_{\text{res}} = k_{\parallel} V_{\text{Alfvén}} = k_{\parallel} B /_{\sqrt{(\mu_0 \rho)}}$
- Numerical factor of $\sim 1/3$ required for quantitative agreement:
 - Impurities (increased effective mass) may account for 15-20%
 - 3D MHD effects ~ 20-40%
 - Still a factor of 1.5-2x required
- Magnetic field scaling is unclear
 - Ion cyclotron resonant heating with fixed frequency couples plasma preparation with magnetic field variation
 - Possible that expected scaling (f ~ B) applies, but indications of f ~ 1/B
- Unknown drive physics
 - $V_A \sim 5e6$ m/s in principle, H+ ions are accelerated by ICRH, but poor confinement of perpendicular H+ at V_A and $V_A/3$ in the heliac configuration makes this unlikely.
 - Electron energies are a better match, but the coupling is weaker.
 - The bounce frequency of the higher energy thermal H+ is in the range of observed frequencies

David Pretty

Helical Alfvén eigenmode

NATIONAL PLASMA FUSION RESEARCH FACILITY

Beta-induced Alfvén eigenmodes?

- At low beta in H-1 (10⁻⁴), the betainduced gap is in the range 5-10kHz.
- This is within the range of the modes near resonance, when iota-n/m is small
- Beta induced gap scales with temperature rather than magnetic field
- → interactions between the beta induced gap and Alfvén continuum could help explain the ambiguous B dependence.
- Scaling of f ~n/m (not *t* n/m) does not explain frequency dependence on *t*.
- Evidence of electrostatic modes, but not at resonance where GAM-like behaviour may be expected.

Mode simulated by rotating m=4 Fourier Bessel object in magnetic coordinates

Mode is strong in outer region, indication that the central amplitude is reduced.

Summary

See also Michael Shats: Wed 14:10 David Pretty: P2: 83 Wed. R. Numata: P2: 59 Wed.

H-1 National Facility

- Configurational flexibility
- Large device physics accessible
 - Confinement Transitions, Alfvén Eigenmodes, Magnetic Islands
- Test Bed for Advanced Diagnostic Development
- H1 plasma can be used to develop reactor edge plasma diagnostics

Alfvénic modes observed

- lota scan is a valuable additional test parameter, especially at low shear
- Increased dimensionality of data space (iota, ne, B, frequency, m, n) is handled by datamining
- Strong evidence for Alfvénic scaling in n_e, k||, f
- Unclear B scaling (resonant plasma production)
- Around resonance, frequency is low by a factor of \sim 3.
- Sensitive interferometer and PMT array \rightarrow valuable mode profile information
- In low shear configurations, near resonant AEs can provide sensitive iota diagnostics under full plasma conditions.
- Will apply technique to Heliotron J and TJ-II data.