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Motivation

+«* Internal diffusion barrier (IDB)
v pellet fueled high density discharges
v active pumped local island divertor (LID) configuration

+* LID configuration
v efficient pumping property due to the localized installation (#7,ump~ 40 %)
v struggle with high heat flux

+* IDB formation in intrinsic helical divertor configuration (HD)
An experimental study has been performed in order to explore the

operational space of the IDB discharge with the intrinsic HD configuration.
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Experimental Setup

+* Large Helical Device
v heliotron type device with NbTi

super-conducting coils
v high energy NBI heating (~ 12 MW)

s» Helical Divertor

v intrinsic divertor configuration in
heliotron type device

v open divertor configuration with
forced water cooled carbon target
plate

v no active pumping capacity

v larger heat receiving area than LID

¢ Pellet Injector
¥ 10 barrel in-situ pipe-gun injector
v pellet size: 3.4 - 3.8 mm (1.5 -
2.0x102" atoms/pellet)
v pellet velocity: 1,000-1,200 m/s
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Position of Magnetic Axis: Rax

A key operational parameter characterizing configuration effect in LHD

+* MHD stability

A
v outward shift = STABLE excellent

«* Orbit of high energetic particles
v inward shift = GOOD

+* Global confinement property
v Rax= 3.6-3.65 m = OPTIMAL

Characteristics

global confinement
MHD stability

particle orbit

Standard
Configuration
| 1 | 1 | 1 | -

«* Divertor function
v inward shift = heavy neutrals

concentration in inboard side
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v Fueling (particle deposition)
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Effects of Particle Deposition (Fueling)

** Gas-puff fueling

v flat or hollow density profile
due to peripheral fueling

«* Pellet injection fueling

v highly peaked density profile

v high central pressure
(exceeds atmospheric
pressure)

¥ plasma 8 become high (> 5
%) even at high magnetic
field ( Bt > 2.54 T)

v very large Shafranov shift
(A/aeft = 1/2)
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Effects of Magnetic Configuration (Rax)

o 11MW, B=254 T

+«* Achievement of high-density/high- 9 Pellet Injecton
pressure operation i

¥ attainable central plasma density
becomes higher as the magnetic axis

shifts outward
— IDB formation

v central temperature follow quite a similar
course after pellet injection

v IDB formation and central pressure
rapidly increase at Rix>3.75 m

: . . 0 ! t
v Plateau of pressure rise at high density o R_= 3.85 m (#6926
regime v R_=3.75 m (#68996

O R_= 3.65 m (#68956
O

® 5.0x10%°m-3 at Ryy=3.75 m
@ >7.4x1020m3 at Rx=3.85m

v Pressure rise is abruptly terminated by a olb— . L

core density collapse (CDC) event -04 -02 00 02 04 06
Time [s]
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Effects of Magnetic Configuration (Rax)

+%» IDB formation in the outward shifted

magnetic configuration (Rax= 3.75 m)
¥ sharp bend in the density profile around

P,=11MW, B =254T

p=0.55
- low density mantle and high density
core
v Achievement of double density without
fall of temperature

¥ Magnetic configuration (outward shift) is
another factor of the IDB formation in
addition to pellet core fueling.

v R_=3.75m (#68996)
o R, =3.65m (#68956)
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High Density Operation with Confinement Improvement

Maximum central density reaches B.=2539T,P_= 11 MW
1x10%" m™3 at Rax> 3.9 m. ' T 2

A jump of the central pressure is

a O
Maximum n_(0)

@

observed around Rax= 3.7 m I ® O +

O
Central pressure reach its largest value 8 * %
(1 30 kPa) at Rax: 3.85 m. - Ce % T (0)
- O i ®'.\Y

. . a
Suppression of pressure rise due to _ .*ne(O).
CDC event é at maximum P(0)

at maximum P(0)

3.65m, #68955 @1.20s
[ 3.70m, #68921 @1.265
| 3.75m, #68995 @1.26s
3.80m, #69261 @1.165s
[ 3.85m, #69268 @1.185s
| 3.00m, #69325 @1.0658

P(0) [kPa]
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Change of IDB Profile from Moment to Moment

+* Operational regime: plateau
v 1=w,<10, vp' <1 at p=0.5

+;» IDB gradient gradually decrease and spread into core region
v box-profile into linear-profile
v due to Iack of particle source inside IDB? or confinement degradation?

| #68996
[ B=2.539T
[R,=3.75m

[102° keV/m™]

e

P
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Temporal Change in Density Gradient

3 Particle transport coefficient of IDB plasma is estimated from time
evolution and gradient of density profile.

I, = —De% + N6 Ve
dp

Y = DX + v, =

[ (Se — 28e)dV

neA

—{1 p=0.80 (mantle)
—— p=0.50 (IDB)
—— p=0.40 (core)
—— p= 0.20 (core)

T

1.4 1.6
Time [s]
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Particle Transport of IDB Plasmas

+«» Core diffusivity is kept at low level even high density gradient.
v profile change (Box-like into linear profile) is explained by lack of particle
source inside IDB
v not sensitive to collisionality

+* Diffusivity of mantle (o= 0.8) deteriorates during IDB phase
+p* Thermal transport coefficient unaffected by particle transport change
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Possible Model of IDB Plasma

+¢» Confinement region is separated into low density mantle and high
density core. This lead to high-density/high-pressure IDB plasma
without radiation problem.

v Low density mantle
- suppress radiation loss = free ™7
from radiative density limit

- secure temperature gradient for

high density core

v High density core
- deep pellet fueling and good
particle confinement lead to
high pressure core plasma

minor radius
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Sustainability of IDB Plasma

+s» IDB plasma can be sustained by using repetitive pellet injection

v Demonstrated in low-B, low-power experiment

3¢+ Core fueling is essential to maintain SDC plasma

v High speed and large pellets are required

v High frequency injection is not required

1.5
Times [s]
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Core Density Collapse Event in IDB Plasma

Pellet Injection IDB formation
~- — =

od |
8E-#69286 W,

+¢» Core density collapse (CDC) event
v Core density is abruptly expelled at high
pressure regime e
v Time scale of CDC is sub-ms '
v Limit central pressure
v Mechanism of CDC
- MHD stability?
- Equilibrium limit?
— Turbulence?

[edy] (0)d

neYS(O)... M.

[keV]
o RO SREN

T(0), T,(0)
N O N ' ONDO®®O ;5 o © N N
T LA T B B 5 A TIT[TTITI T[T

1, [a.u]

neL
10%° [m™?)

++ Potential solution: Suppression of
Shafranov shift
v Vertical field control (inward shift)
v Suppressing P-S currents
- Aspect ratio (reduce minor radius)
- Ellipticity (vertical elongation)
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Core Density Collapse Event in IDB Plasma

+¢» Core density collapse (CDC) event
v Core density is abruptly expelled at high
pressure regime
v Time scale of CDC is sub-ms
v Limit central pressure

v Mechanism of CDC
- MHD stability?
- Equilibrium [imit?
- Turbulence?

+3* Potential solution: Suppression of
Shafranov shift
v Vertical field control (inward shift)
v Suppressing P-S currents
- Aspect ratio (reduce minor radius)
- Ellipticity (vertical elongation)
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Suppression of Shafranov Shift by Vertical Elongation

3 Vertical elongation is effective to suppress the Shafranov shift
v CDC limits central pressure for x< 1.2
v CDC disappears when x> 1.2
v Higher central beta 6.6 % has been achieved under CDC free condition

related poster at P1-051: Ohdachi and P1-087: Miyazawa
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Impurity Behavior in IDB Plasma

+* Neoclassical ambipolar diffusion
¥ ion root (negative radial electric

field)

v impurity accumulation?

3+ No significant indication of
impurity accumulation
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Impurity Behavior in IDB Plasma

friction force by
plasma flow

<
thermal force

v divertor

//-B field

s} EMC3-EIRENE calculation
v Impurity shielding potential in
ergodic layer
- Outward friction force dominate
impurity behavior in high-density
regime

//-impurity velocity

Friction Thermal force

force
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related presentation at I-07: Kobayashi
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Summary

3 IDB plasma has been reproducibly obtained at the intrinsic helical
divertor configuration as in LID configuration by optimizing the pellet

fueling and magnetic configuration.
v Core fueling by multi-pellet injection is essential.

v The IDB easily appears in the outward-shifted magnetic configuration.
3 The central density reaches 1x102" m= at R,>3.9 m and the central
pressure has reached 1.3 times atmospheric pressure.

+3» Confinement region is separated into low density mantle and high

density core in IDB plasma. This lead to high pressure core plasma.
v Diffusivity is kept at low level even high density gradient in high density core.
v Low density mantle suppress radiation loss and secure temperature gradient.

+» CDC event, which arise from very large Shavranov shift, limit operational

regime.
v Suppression of Shafranof shift with ellipticity control can mitigate CDC event
and the central f is increase up to 120 % of standard configuration.

+s» Harmful impurity accumulation has not been observed in IDB plasma.
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