Joint Conference of

17th International Toki Conference and 16th International Stellarator/Heliotron Workshop 2007

October 15-19, 2007 Ceratopia Toki, Toki, Gifu, Japan

Properties of internal diffusion barrier in high density plasmas on Large Helical Device **National Institute for Fusion Sci**

R. Sakamoto, M. Kobayashi, J. Miyazawa, S. Ohdachi, T. Morisaki, S. Masuzaki, I. Yamada, M. Goto, K. Ida, S. Morita, S. Sakakibara, K. Tanaka, K. Kawahata, K.Y. Watanabe, Y. Suzuki, H. Funaba, S. Murakami*, N. Ashikawa, Y. Nagayama, Y. Narushima, B.J. Peterson, M. Shoji, C. Suzuki, M. Tokitani, S. Yoshimura, N. Ohyabu, H. Yamada, A. Komori, O. Motojima and LHD experimental group

LHD Proje

National Institute for Fusion Science, Toki Gifu 509-5292, Japan *Kyoto University, Kyoto 606-8501, Japan

Table of Contents

✓ Motivation

- ✓ Experimental setup
- ✓ Helical divertor (HD) configuration

Internal Diffusion Barrier (IDB) Formation in HD

- ✓ Fueling (particle deposition)
- ✓ Magnetic Configuration (position of magnetic axis)

Properties of IDB Plasmas

- ✓ Change of profile
- ✓ Particle transport
- ✓ Potential model of IDB plasma
- ✓ Sustainability of IDB plasma
- ✓ Core density collapse event in IDB plasma
- ✓ Impurity behavior in IDB plasma

💸 Summary

Table of Contents

- ✓ Motivation
- ✓ Experimental setup
- ✓ Helical divertor (HD) configuration
- Internal Diffusion Barrier (IDB) Formation in HD
 - ✓ Fueling (particle deposition)
 - ✓ Magnetic Configuration (position of magnetic axis)
- Properties of IDB Plasmas
 - ✓ Change of profile
 - ✓ Particle transport
 - ✓ Potential model of IDB plasma
 - ✓ Sustainability of IDB plasma
 - ✓ Core density collapse event in IDB plasma
 - ✓ Impurity behavior in IDB plasma

Summary

Motivation

Internal diffusion barrier (IDB)

- ✓ pellet fueled high density discharges
- ✓ active pumped local island divertor (LID) configuration

LID configuration

- ✓ efficient pumping property due to the localized installation (η_{pump} ~ 40 %)
- ✓ struggle with high heat flux

IDB formation in intrinsic helical divertor configuration (HD)

An experimental study has been performed in order to explore the operational space of the IDB discharge with the intrinsic HD configuration.

Experimental Setup

Large Helical Device

- heliotron type device with NbTi super-conducting coils
- ✓ high energy NBI heating (~ 12 MW)

Helical Divertor

- ✓ intrinsic divertor configuration in heliotron type device
- ✓ open divertor configuration with forced water cooled carbon target plate
- ✓ no active pumping capacity
- ✓ larger heat receiving area than LID

Pellet Injector

- ✓ 10 barrel in-situ pipe-gun injector
- ✓ pellet size: 3.4 3.8 mm (1.5 -
 - 2.0×10²¹ atoms/pellet)
- ✓ pellet velocity: 1,000-1,200 m/s

Position of Magnetic Axis: Rax

A key operational parameter characterizing configuration effect in LHD

MHD stability

- $\checkmark \text{ outward shift} \Rightarrow STABLE$
- ♦ Orbit of high energetic particles
 ✓ inward shift ⇒ GOOD
- ◆ Global confinement property
 ✓ Rax= 3.6-3.65 m ⇒ OPTIMAL

Divertor function

✓ inward shift ⇒ heavy neutrals concentration in inboard side

Table of Contents

Introduction

- ✓ Motivation
- ✓ Experimental setup
- ✓ Helical divertor (HD) configuration

Internal Diffusion Barrier (IDB) Formation in HD

- ✓ Fueling (particle deposition)
- ✓ Magnetic Configuration (position of magnetic axis)

Properties of IDB Plasmas

- ✓ Change of profile
- ✓ Particle transport
- ✓ Potential model of IDB plasma
- ✓ Sustainability of IDB plasma
- ✓ Core density collapse event in IDB plasma
- ✓ Impurity behavior in IDB plasma

Summary

Effects of Particle Deposition (Fueling)

Gas-puff fueling

✓ flat or hollow density profile due to peripheral fueling

Pellet injection fueling

- ✓ highly peaked density profile
- ✓ high central pressure (exceeds atmospheric pressure)
- ✓ plasma β become high (> 5 %) even at high magnetic field (Bt > 2.54 T)
- ✓ very large Shafranov shift (∆/a_{eff} ≈ 1/2)

Effects of Magnetic Configuration (Rax)

Achievement of high-density/highpressure operation

- ✓ attainable central plasma density becomes higher as the magnetic axis shifts outward
 - IDB formation
- central temperature follow quite a similar course after pellet injection
- ✓ IDB formation and central pressure rapidly increase at R_{ax}≥ 3.75 m
- ✓ Plateau of pressure rise at high density regime
 - $2.7 \times 10^{20} \text{ m}^{-3}$ at R_{ax} = 3.65 m
 - 5.0×10^{20} m⁻³ at R_{ax}= 3.75 m
 - >7.4×10²⁰ m⁻³ at R_{ax} = 3.85 m
- ✓ Pressure rise is abruptly terminated by a core density collapse (CDC) event

Effects of Magnetic Configuration (Rax)

IDB formation in the outward shifted magnetic configuration (Rax = 3.75 m)

✓ sharp bend in the density profile around $\rho = 0.55$

low density mantle and high density core

✓ Achievement of double density without fall of temperature

✓ Magnetic configuration (outward shift) is another factor of the IDB formation in addition to pellet core fueling.

High Density Operation with Confinement Improvement

- Maximum central density reaches 1×10^{21} m⁻³ at R_{ax}> 3.9 m.
- ✤ A jump of the central pressure is observed around Rax= 3.7 m
- Central pressure reach its largest value (130 kPa) at R_{ax} = 3.85 m.
- Suppression of pressure rise due to CDC event

Table of Contents

Introduction

- ✓ Motivation
- ✓ Experimental setup
- ✓ Helical divertor (HD) configuration

Internal Diffusion Barrier (IDB) Formation in HD

- ✓ Fueling (particle deposition)
- ✓ Magnetic Configuration (position of magnetic axis)

Properties of IDB Plasmas

- ✓ Change of profile
- ✓ Particle transport
- ✓ Potential model of IDB plasma
- ✓ Sustainability of IDB plasma
- ✓ Core density collapse event in IDB plasma
- ✓ Impurity behavior in IDB plasma

Summary

Change of IDB Profile from Moment to Moment

Operational regime: *plateau*

✓ $1 \le v_b^* \le 10$, $v_p^* \le 1$ at $\rho = 0.5$

IDB gradient gradually decrease and spread into core region

✓ box-profile into linear-profile

✓ due to lack of particle source inside IDB? or confinement degradation?

Temporal Change in Density Gradient

Particle transport coefficient of IDB plasma is estimated from time evolution and gradient of density profile.

ITC17 / ISHW16

14/23

Particle Transport of IDB Plasmas

- * Core diffusivity is kept at low level even high density gradient.
 - ✓ profile change (Box-like into linear profile) is explained by lack of particle source inside IDB
 - ✓ not sensitive to collisionality
- **\diamond** Diffusivity of mantle (ρ = 0.8) deteriorates during IDB phase
- Thermal transport coefficient unaffected by particle transport change

Possible Model of IDB Plasma

Confinement region is separated into low density mantle and high density core. This lead to high-density/high-pressure IDB plasma without radiation problem.

✓ Low density mantle

- suppress radiation loss ⇒ free from radiative density limit
- secure temperature gradient for high density core

✓ High density core

 deep pellet fueling and good particle confinement lead to high pressure core plasma

Sustainability of IDB Plasma

IDB plasma can be sustained by using repetitive pellet injection

✓ Demonstrated in low-B, low-power experiment

Core fueling is essential to maintain SDC plasma

- ✓ High speed and large pellets are required
- ✓ High frequency injection is not required

Core Density Collapse Event in IDB Plasma

Core density collapse (CDC) event

- ✓ Core density is abruptly expelled at high pressure regime
- ✓ Time scale of CDC is sub-ms
- ✓ Limit central pressure
- ✓ Mechanism of CDC
 - MHD stability?
 - Equilibrium limit?
 - Turbulence?

Potential solution: Suppression of Shafranov shift

- ✓ Vertical field control (inward shift)
- ✓ Suppressing P-S currents
 - Aspect ratio (reduce minor radius)
 - Ellipticity (vertical elongation)

Core Density Collapse Event in IDB Plasma

Core density collapse (CDC) event

- Core density is abruptly expelled at high pressure regime
- ✓ Time scale of CDC is sub-ms
- ✓ Limit central pressure
- ✓ Mechanism of CDC
 - MHD stability?
 - Equilibrium limit?
 - Turbulence?
 -

Potential solution: Suppression of Shafranov shift

- ✓ Vertical field control (inward shift)
- ✓ Suppressing P-S currents
 - Aspect ratio (reduce minor radius)
 - Ellipticity (vertical elongation)

Suppression of Shafranov Shift by Vertical Elongation

* Vertical elongation is effective to suppress the Shafranov shift

- ✓ CDC limits central pressure for κ < 1.2
- ✓ CDC disappears when κ > 1.2
- ✓ Higher central beta 6.6 % has been achieved under CDC free condition

related poster at P1-051: Ohdachi and P1-087: Miyazawa

Impurity Behavior in IDB Plasma

Neoclassical ambipolar diffusion

- ✓ ion root (negative radial electric field)
- ✓ impurity accumulation?
- No significant indication of impurity accumulation

Impurity Behavior in IDB Plasma

EMC3-EIRENE calculation

- Impurity shielding potential in ergodic layer
 - Outward friction force dominate impurity behavior in high-density regime

//-impurity velocity

$$V_{Z\parallel} = \frac{V_{i\parallel}}{V_{i\parallel}} + \frac{2.2 \frac{\tau_{Zi}}{m_Z} Z^2 \frac{\partial T_i}{\partial s}}{\text{Thermal force}}$$

22/23

Summary

- IDB plasma has been reproducibly obtained at the intrinsic helical divertor configuration as in LID configuration by optimizing the pellet fueling and magnetic configuration.
 - ✓ Core fueling by multi-pellet injection is essential.
 - ✓ The IDB easily appears in the outward-shifted magnetic configuration.
- \clubsuit The central density reaches 1×10^{21} m⁻³ at R_{ax} ≥ 3.9 m and the central pressure has reached 1.3 times atmospheric pressure.
- Confinement region is separated into low density mantle and high density core in IDB plasma. This lead to high pressure core plasma. ✓ Diffusivity is kept at low level even high density gradient in high density core. ✓ Low density mantle suppress radiation loss and secure temperature gradient.
- CDC event, which arise from very large Shavranov shift, limit operational regime.
 - ✓ Suppression of Shafranof shift with ellipticity control can mitigate CDC event and the central β is increase up to 120 % of standard configuration.

Harmful impurity accumulation has not been observed in IDB plasma. ITC17 / ISHW16