Global Simulations of Turbulence and Dynamos in Differentially Rotating Astrophysical Plasmas

Ryoji Matsumoto (Chiba Univ.) Collaborators: Minoru Tanaka (Chiba Univ.) and Mami Machida (NAOJ)

Magnetic Activities of Astrophysical Plasma

X-ray Image by HINODE Satellite

Optical image of sunspots by HINODE

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

Butterfly Diagram of Sunspots (NASA) 2

Filamentary Structure and Radio Arc Near the Galactic Center

Yusef-Zadeh and Morris 1987

Accretion Disks and Jets

A Schematic Picture (NASA)

Protoplanetary Disk and Optical Jet (HST) 4

Two Models of Magnetically Driven Jet

Magneto-centrifugally driven jet

Blandford & Payne (1982) Uchida and Shibata (1985)

Magnetic tower jet

Lynden-Bell & Boily (1994) Kato et al. (2004)

Outline of This Talk

- Flows, Turbulence and Magnetic Field Amplification in Astrophysical Rotating Disks
 - Angular momentum transport in differentially rotating disks
 - Global 3D MHD Simulations of Accretion
 Disks
 - Global 3D MHD Simulations of Galactic Gas
 Disks

Angular Momentum Transport in Accretion Disks

- Interval of dwarf nova outbursts indicate $\alpha = 0.01 0.1$
- In hydrodynamical disks $\alpha = O(0.001)$ too small !

Theoretical Breakthrough: Magnetorotational Instability

MRI in differentially rotating disks (Balbus and Hawley 1991)

Global Three-dimensional Resistive MHD Simulations of Black Hole Accretion Flows

(Machida and Matsumoto 2003 ApJ) $% \left(A_{1}^{2}\right) =0$

Gravitational potential : $\phi = - GM/(r-r_g)$

Angular momentum : initially uniform Magnetic Field : purely azimuthal

 $Pgas/Pmag = \beta = 100$ at $50r_g$

Anomalous Resistivity

 $\eta = (1/Rm) \max [(J/\rho) / v_c - 1, 0.0]$

250*64*192mesh

Formation of an Accretion Disk

Volume rendered image of density distribution

Time Evolution of Magnetic Energy and Maxwell Stress

X-ray Shots in Black Hole Accretion Disks

Sawtooth-like Oscillation

Sawtooth-like Oscillation in Nonlinear Systems

 Sawtooth oscillation takes place when instability and dissipation coexists

Growth and Disruption of m=1 Non-axisymmetric Mode

We found that during the amplification of magnetic energy, m=1 nonaxisymmetric mode grows and deforms the disk to crescent shape.

Why Sawtooth-like Oscillations Appear in Low Temperature Disks ?

Machida and Matsumoto 2007 submitted to PASJ

Formation ot the Inner Torus is Essential for sawtooth-like oscillations

High temperature(HT) model

Low temperature (LT) model

High Frequency Oscillations are Excited during Sawtooth-like Oscillation

Magnetic Fields in Spiral Galaxies

M51 (Berkhuijsen et al. 1997)

Our Galaxy (Han et al. 2002)

How Galactic Magnetic Fields are Amplified and Maintained ?

Magnetic Fields of Galactic Disk

Simulation Model for a Galaxy ≥Nishikori et al. 2006, ApJ 641,862)

Axisymmetric Gravitational Potential

 $\phi(\varpi, z) = \sum_{i=1}^{3} \frac{GM_i}{[\varpi^2 + \{a_i + (z^2 + b_i^2)^{0.5}\}^2]^{0.5}},$

Miyamoto et al. (1980)

- Cylindrical Coordinate System
- Simulation Region

 $0 < \omega < 56$ kpc, 0 < z < 10kpc

- Absorbing boundary at r=0.8kpc
- Initally Weak Azimuthal Field $-\beta = Pgas/Pmag = 100 - 10000$
- Mesh points : 250 x 64 x 319

Numerical Results ($\beta = 100$)

t = 3.8Gyr

3.5Gyr

2Gyr

Amplification and Saturation of Magnetic Fields

Average in 2 kpc < r < 5 kpc and 0 < z < 1 kpc

Spacial and Temporal Reversal of Magnetic Fields ($\beta = 1000$)

Radial Reversal of Mean Magnetic Fields

Azimuthal field at t=3.8Gyr at z=0.25Kpc

(Han et al. 2002)

Summary

- We carried out global 3D MHD simulations of differentially rotating astrophysical plasmas such as accretion disks and Galactic gas disks
- In cool gas is supplied, sawtooth-like oscillation is excited by the magnetic field amplification due to MRI and magnetic energy release due to magnetic reconnection
- In Galactic disks, mean magnetic fields are amplified up to 1-2 micro Gauss
- Azimuthal magnetic fields reverse their direction both in space and in time. The period of field reversal is about 1Gyr in our Galaxy.