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Impurities: should they be of concern for stellarators?

€ Impurities acceptable at low concentrations
= Beneficial (e.g. radiative cooling at edge, etc.)
= Valuable diagnostic tools (e.g. V,, E,, etc.)

@ Avoid core impurity accumulation (high-Z) during improved
energy confinement modes

m Overbalance of equilibrium between radiation
losses & heating power

m Degradation of plasma energy

) Discharge termination
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An unfavourable impurity confinement dependence on density!
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How can core impurity accumulation be prevented?
€9 Tokamaks

= Confinement degrading phenomena such as
ELMs and sawtooth crashes can be used to flush
out impurities.

PS
P

(vy)

diffusion coefficient

class.

collisionality

With the background plasma is in banana regime

B v can be outward m) Temperature screening
(from axisymetric neoclassics)
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How can core impurity accumulation be prevented?
€9 Tokamaks

= Confinement degrading phenomena such as
ELMs and sawtooth crashes can be used to flush
out impurities. Also temperature screening.

@ Stellarators
= Current-connected phenomena not an option

= ELMs difficult to produce in a controlled manner

= No principal neoclassical mechanism in standard ion root
(only in low n_ +ive electric fields in roots).

= 3-dim magnetic topology

m—> Additional collisionality regimes for the
background gas appear in the Imfp regions
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How can core impurity accumulation be prevented?
€9 Tokamaks

= Confinement degrading phenomena such as
ELMs and sawtooth crashes can be used to flush
out impurities. Also temperature screening.

@ Stellarators
m Currenf 8 ption
i
= ELMsd $ | manner
= No prin é standard ion root
(only in| = s).
collisionality

= 3-dim magnetic topology

m—> Additional collisionality regimes for the
background gas appear in the Imfp regions

No temperature screening possible in P, v, 1/v, v%5 (v is inward)
~» Non-axisymmetric
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How can core impurity accumulation be prevented?
€9 Tokamaks

= Confinement degrading phenomena such as
ELMs and sawtooth crashes can be used to flush
out impurities. Also temperature screening.

@ Stellarators
= Current-connected phenomena not an option

= ELMs difficult to produce in a controlled manner

= No principal neoclassical mechanism in standard ion root
(only in low n_ +ive electric fields in roots).

= 3-dim magnetic topology

m—> Additional collisionality regimes for the
background gas appear in the Imfp regions

= There is a need to investigate Stellarator specific ways
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What can these observations tell us wrt. stellarator pathways?
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& T, scales with 1 '
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€ Introduction of

divertor modules led 2 01
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& Significant drop in T, 0.01
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0.001
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Motivation

What can these observations tell us wrt. stellarator pathways?
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Figure 6. Time evolution of plasma parameters and the central iron density in a density ramp-up
discharge (shot 17090). The plasma density increases with time by constant gas puffing. The
central iron density was estimated with the impurity transport code MIST.

Y. Nakamura et al.,
PPCF 44 (2002) 2121
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Can core impurity accumulation be prevented?
€ Tokamaks

= Confinement degrading phenomena such as
ELMs and sawtooth crashes can be used to flush
out impurities. Also temperature screening.

@ Stellarators
= Current-connected phenomena not an option
= ELMs difficult to produce in a controlled manner

= No principal neoclassical mechanism in standard ion root
(only in low n_ +ive electric fields in roots).

B Different magnetic topology
m——> additional transport regimes in Imfp regimes

) Stellarator specific ways have been explored
I—> need a clearer understanding of underlying physics
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Is impurity behaviour in stellarators well described by the
standard theoretical models for axisymmetric devices?

€@ If good agreement with observations

= Transport is understood

= Conclusions can be drawn with respect to further
improvements and extrapolations

€ If poor agreement with observations

= Point to dominance of turbulent/anomalous transport ?
= The need for Stellarator specific transport contributions ?

= Further interpretation becomes difficult!!

® Predictions have to be substituted by measurement.
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Impurity Content

What mechanisms determine impurity content?

€@ Impurity influx from the chamber walls, etc.
= Governed by transport at open magnetic field & retention
Feng I-06 & Kobayashi I-07
€ Impurity transport inside closed magnetic surface

m Diffusive, D, and convective, v, terms

v driven by T and n gradients & space potential
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Impurity Transport Analysis

€ Confinement time, Timp = Global transport quantity

Highest ionization stages

PMT I:I |:|Bolometer
=1 (soft x-ray, VUV)
Thin layer of .
g; metallic impurity Core transport studies
Plasma ¢ < Laser
hv
Sample chamber

I:I Laser blow-off
Soft X-ray Visible & VUV Also impurity pellet injection
Detector  Spectrometers & gas-oscillation
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Impurity Transport Analysis

€ Confinement time, Timp ® Global transport quantity

€ Local transport quantities

<> Impurity fluxes, I', are based on neoclassical and PS
transport for axisymmetric devices

['=D-Vn+v-n
D (r) - diffusion coefficient (m2 s-1)
v (r) - convective velocity (m s1)

€ One-dimensional impurity transport models for axisymetric
devices (e.g., SITAR, MIST codes)

¢ No stellarator specific transport
features implemented
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W7-AS
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W7-AS
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W7-AS
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Pecry dependence in TJ-lI
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What lies behind density dependence?

n, profiles similar —7x1019 m3
Comparison of ECRH plasmag mno indication for °°

different E.  e0o=3-5x 1019 m3
electron dmﬁs@y A mdH Ne : medium
& ol density
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Might accumulation be due to slightly more peaked T, profile?
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What lies behind density dependence?

Local transport coefficients — experiment and prediction
(SITAR, for axisymmetric devices only)
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What lies behind density dependence?

Local transport coefficients — experiment and prediction
(SITAR, for axisymmetric devices only)
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What lies behind density dependence?

Local transport coefficients — experiment and prediction
(SITAR, for axisymmetric devices only)
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What lies behind density dependence?

Local transport coefficients — experiment and prediction
(SITAR, for axisymmetric devices only)
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H / NBI plasmas comparison with theory
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ECRH / NBI plasmas comparison with theory
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W7-AS ECRH / NBI plasmas comparison with theory
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W7-AS HDH mode

NC HDH

= 140

= € Island Divertor modules

o 0@
g 30E & Transition from NC to HDH at a power
gg 120 _;; dependent threshold density
= = 110 E ¢ Timp decreases

~ ¢ Tgincreases

P 0
% N I I 1 1 I I ' ';
S < Density profile flattens
=
£ . | Temperature profile is similar

o |
> < |
o :
=
® |

0 5 10 15
r (cm)

17t International Toki Conference on Physics of Flows and Turbulence in Plasmas
and 16t International Stellaretor/Heliotron Workshop R. Burhenn et al, 30th EPS (2003) 27A



W7-AS HDH mode

NC HDH
/ [ ]
3 D=1 m2/ For plasma core:
:@2 N 1. Diffusion coefficients similar
NE < 2. Inward convective velocity is reduced
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W7-AS HDH mode

NC HDH
Need to consider plasma edge also!!
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Density Ramp-up
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Fig. 11 Profiles of (a) radiation and (b) iron density at each time (t = 2, 5.5, 7.3 s) for
the discharge in Fig. 10. The lines in the radiation profiles indicate the fitting curves
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Figure 6. Time evolution of plasma parameters and the central iron density in a density ramp-up

discharge (shot 17090). The plasma density increases with time by constant gas puffing. The
central iron density was estimated with the impurity transport code MIST.

Y. Nakamura et al.,
PPCF 44 (2002) 2121

calculated from the impurity transport code MIST.

Y. Nakamura et al. ISW 2002, No. OIV:5
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Density Ramp-up
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Figure 9. Time evolution of (a) central radiation and (b) Fe xxamn
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Figure 6. Time evolution of plasma parameters and the central iron density in a density ramp-up =
discharge (shot 17090). The plasma density increases with time by constant gas puffing. The > 0.5
central iron density was estimated with the impurity transport code MIST. E
0.0

Y. Nakamura et al.,

Y. Nakamura et al.
PPCF 44 (2002) 2121 NF 43 (2003) 219 ’ Figure 9. Time evolution of (a) central radiation and (b) Fe xxamn
( ) emission for discharges with constant densities. Remarkable
increases are observed only for the discharge with 2.7 x 10'° m—3,

Time (s)
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Figure 6. Time evolution of plasma parameters and the

discharge (shot 17050). The plasma density increases non-axisymmetric neoclassics (no T, screening) !? ?

central iron density was estimated with the impurity trany

(H. Maassberg et al., PFCF 41 (1999) 1135 ) -
Y. Nakamura et

. NdRdAlmnura et dr.
PPCF 44 (2002) 2121 ;":' 43 (2003) 219 "7 Figure 9. Time evolution of (a) central radiation and (b) Fe xxm

emission for discharges with constant densities. Remarkable
increases are observed only for the discharge with 2.7 x 10'° m—3,
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LHD

What are the reason(s) for
the accumulation window?

Low High Ambipolar field E, positive Er

collisionality collisionality @ ' in ,,e-root”
10
so |:> outward flux
B 5 c
z 1 in core
40} £ o
o : H 111 . .
5 %9f IS | ,,1-root” | impurity flux
§£ 2.0 pac -15 R I::) hlgh
= : (b) 3.0 . i
1.0F .
_ - Ne+10 Changing E, seems to
: oL f,=25[10"m7) | .
0o S P cause ,accumulation®
2 10f ] May be caused
Figure 12. Decay time of TiKa emission as a function of = -
normalized collision frequency for impurity ions. The central iron T -0 by dom Ina nt
density (@) in a density ramp-up discharge is also indicated to 0.0 e
compare the collisionality with that in the impurity accumulation 00 02 04 R 06 08 10 eﬁect Of T grad

window.

Figure 13. Radial profiles of (a) radial electric field and (b) fully i n PS (n e fl at)

ionized neon density for the discharges with a pulsed neon gas

Y. Nakamura et al., ISW 2002, No. OIV:5 injection. The radial electric field i din the midplane at i
’ ’ position where the plasma is verticlly clongated. The clectric field Temperature
changes from positive to negative with increasing electron density. -
The neon density increases monotonically as the density is Sc ree n I n g 17
increased.
Y. Nakamura et al., NF 43 (2003) 219 effect
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LHD

Why purification beyond
the accumulation window?

] ] _ _ Assumption:
... long impurity Ambipolar field E,
confinement times @ 15—
10} fi =057 y If T and Er VV.OlJld
5.0 [ § sl . _ continue to rise (?) ...
®n (0 I @un E N Tl
40l o - i, : o N
—_ decay i IR N W . . 1
o CoaN | st ] ... then ,purifucation
Sy L N\ L o ﬂ’m] ‘ window means:
S 20} a(;c:(tjlmulatic:nf’ | n W 15 4 ‘
= window ol = = .
| and E_at high n_ interesting; .
10p S e f gh N ... a decrease of influx
o | : —~ -
0ol B o e 20} 0,=25[10"m"] but still
10_2 10—1 100 101 '_‘c_ ﬁg: 14
&'z, ‘;; \ ’?
2 1o .
Figure 12. Decay time of TiKe emission as a function of <
normalized collision frequency for impurity ions. The central iron -
density (@) in a::_le_nsity_ram]_)-up dis_cha:ge: is also indicated to o n, =057
fﬁﬁg};ﬁ!the collisionality with that in the im If ,,YeS“ >SS Similar ne-dependence in LHD as W?'AS, TJ'”

at least for core confinement
Y. Nakamura et al., ISW 2

Dexp >> Dneos Cannot be related just to turbulent transport

(may need ,still to be understood“ non-axisymetric features)
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Similarities and differences

& Indications for anomalous/turbulent transport at low and medium densities
(TJ-ll, W7-AS, LHD)

@ Tendency to approach neoclassics at high density (LHD, W7-AS)

€ Improvement of impurity core confinement with density
(TJ-ll, W7-AS, LHD (high ne))

€ Impurity screening mechanisms at high density similar/different in
W7-AS and LHD?

Many features are qualitatively
... consistent with traditional neoclassics - but not quantitatively
... hot consistent with traditional neoclassics

Need for non-axisymmetric neoclassics ?
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Database requirements

€ In DB, data needed for scaling:
Timp (B,n,T,P,i, maximum E_, heating system...)
D,v or D(r) ,u(r) at e.g. 2 radial positions, maximum E, ...

@ To achieve a better understanding of physics of transport:
For comparison need dedicated discharges with well documented
(Timp» l0cal D,u or with profiles of n,,T,,T,E,, Pyoa, ---.)

€ Basis for understanding:

1) Consideration of stellarator specific features in neoclassical model
(3-D magnetic topology, gradB-drift, D(E,Z, v*) >> no analytical
solution for ambipolarity,..)

>> strong impact: e.g. no T.-screening

2) When can plasma be described with a neoclassical model
and when is it anomalous/turbulent >> key: D(r)

3) E, diagnostic very important for comparison of experimental v with
neoclassical model.
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