Impact of lithium-coated walls on plasma performance in the TJ-II stellarator

<u>F.L. Tabarés,</u> I. García-Cortés, D. Tafalla, J.A. Ferreira, M.A Ochando, R. Balbín, F. Medina, and the TJ-II Team

Laboratorio Nacional de Fusión. CIEMAT.Av. Complutense 22. 28040 Madrid

Laboratorio Nacional de Fusión

Oulook

- Introduction
- Lithiumization of TJ-II
- Particle control
- Impurity behavior
- NBI plasmas
- Conclusions

Introduction

Plasma Wall Interaction in Stellarators:

+ No disruptions, no Type I ELMS, no density limit (Greenwald..), intrinsic divertor...

- Larger aspect ratio...smaller <a> for given volume:

-Higher S/V ratio

-Higher λ iz /a ratio

Laboratorio Nacional de Fusión

Lithium in Tokamaks

Why Li?

- Very low Z
- High impurity getter (O₂,N₂,CO, H₂O,CO₂...)
- Strong H retention (LiH)
- Low melting point: Liquid PFC
- Effect on C sputtering OK (H. Sugai, JNM 1998)

Very good results in Tokamaks:

TFTR, CDX-U, FTU, T-10, T-11M....

Different ways of deposition; Liquid tray, pellets, LLL, CPS, evaporation.....

But : problems in reproduce beneficial effect: Total coverage??

Wall Conditioning in TJ-II

-Metal walls +He GD+Ar GD: He release, Enhanced Particle Confinement transition (EPC, F.L. Tabarés et al PPCF 2001)

-Boronization; O-carborane+He GD: wall saturation (<20 discharges)+ EPC

Laboratorio Nacional de Fusión

Lithium coating in TJ-II

How?

Li Coating Technique

4 Lithium ovens: 2 fixed (side windows) and 2 in retractable manipulators (top windows)

Emission of Li injected from a retractable oven

1 gr of Li per oven, heated to ~600 °C during Ne GD

Energéticas, Medioambientale v Tecnológicas Laboratorio Nacional de Fusión

Impact on plasmas

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Particle Control Li vs B

Fig.1. Particle balance under B and Li wall conditions. Top: integrated particle injected per pulse. Bottom. Cumulative retention of H in the walls. Black, Li. Blue and red, B.

Dynamic particle balance

For ECRH plasmas: $dN/dt = f. Qin-N/(\tau p/1-R)$

Always in the EPC mode?

Laboratorio Nacional de Fusión

Impurity behavior

Laboratorio

Nacional

de Fusión

Impurity behavior

Ion confinement

- Similar Ti in ECRH plasmas, but higher Te(0)

 v_{i-e} . ΔT_{i-e} . ne- $(Ti/\tau_i + K_{cx}n_0Ti)$. ni=0 , for high v_{i-e} , CX losses neglected

NBI Plasmas

•Density control: Still limited by density ramp up: NBI fuelling enhanced by PWI, but lower dN/dt obtained in Li

•Record density and W dia at collapse obtained in Li walls

•Strong change of edge/core radiation ratio: Thermal vs radiative collapse(?) (M. A Ochando et al Nucl.Fus.1997

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

System Upgrade

Searching for homogeneity:

-8 ovens, loaded for repetitive, in situ evaporation (6-8 cycles)

- Diffusion can help:

Conclusions

- •Li coating by evaporation was performed in TJ-II.
- Only a partial coverage initially achieved, but evolved with plasma interaction
- Machine operation more reliable and reproducible
- •Density control highly improved, long lasting effect
- Strong change in particle recycling
- Good impurity control, but hotter edge problematic if C(Me) is exposed to the plasmas: homogeneity problem?
- No major changes in confinement, but transition to EPC hindered
- Better control of NBI plasmas, but still to improve
- Change in radiation profiles may prevent radiation instability-driven collapse
- Improvement of technique in progress

Laboratorio Nacional de Fusión