

Design Integration toward Optimization of LHD-type Fusion Reactor FFHR

<u>Akio Sagara,</u> O. Mitarai¹, S. Iamagawa, Y. Kozaki, T. Watanabe, T. Tanaka, N. Yanagi, K. Takahata, H. Tamura, H. Chikaraishi, S. Yamada, T. Mito, A. Shishkin², Y. Igitkhanov³, H. Igami, T. Morisaki, M. Kobayashi, R. Sakamoto, H. Yamada, O. Motojima and FFHR design group

National Institute for Fusion Science, Japan

¹Kyushyu Tokai University, Japan ²Kharkov Institute of Physics and Technology, Ukraine ³Max-Planck-Institut fur Plasmaphysik, Germany

FFHR 2 GWth 6 Tesla 25,000 ton

FFHR design collaborations

Presentation outline toward design optimization

1. Reactor size and cost 2. Minimization of heating power 3. High density ignition and control 4. Large SC magnet system 5. Access to Demo 6. Concluding remarks

Two main features in FFHR

 (1) Quasi-force free γ optimization on continuous helical winding
 to reduce the magnetic hoop force (Force Free Helical Reactor: FFHR)
 to expand the blanket space

 $\gamma = \left(\frac{m}{1}\frac{a_c}{P}\right)$

 γ =tan θ

(2) Self-cooled liquid Flibe (BeF₂-LiF) blanket
> low MHD pressure loss
> low reactivity with air
> low pressure operation
> low tritium solubility

Long life blanket and wide maintenance ports

- 1. Simplified support structure with wide maintenance ports due to FF concept.
- 2. Neutron wall loading ~ 1.5 MW/m² is a key for long life or replacement free blanket.

STB (Spectral-shifter and Tritium breeder Blanket)

A.Sagara, Nuclear Fusion 45 (2005) 258

Reactor size optimization <u>w/o</u> increasing neutron wall loading in FFHR

Ergodic layer is important for alpha-heating efficiency > 90 %,

Three candidates are proposed to increase blanket space > 1.1 m

7 / 22

Three candidates are proposed to increase blanket space > 1.1 m

Design parameters			LHD	FFHR2	FFHR2m1	FFHR2m2	
Polarity	1		2	2	2	2	
Field periods	m		10	10	10	10	
Coil pitch parameter	γ		1.25	1.15	1.15	1.25	
Coil major Radius	R _c	m	3.9	10	14.0	17.3	
Coil minor radius	a _c	m	0.98	2.3	3.22	4.33	
Plasma major radius	R_p	m	3.75	10	14.0	16.0	
Plasma radius	a_p	m	0.61	1.24	1.73	2.80	
Plasma volume	Vp	m ³	30	303	827	2471	
Blanket space	Δ	m	0.12	0.7	1.1	1.15	
Magnetic field	\mathbf{B}_0	Т	4	10	6.18	4.43	
Max. field on coils	\mathbf{B}_{\max}	Т	9.2	14.8	13.3	13.0	
Coil current density	j	MA/m^2	53	25	26.6	32.8	
Magnetic energy		GJ	1.64	147	133	118	
Fusion power	$P_{\rm F}$	GW		1	1.9	3	
Neutron wall load	Γ_{n}	MW/m^2		1.5	1.5	1.3	
External heating power	P _{ext}	MW		70	80	100	
α heating efficiency	η_{α}			0.7	0.9	0.9	
Density lim.improveme	nt			1	1.5	1.5	
H factor of ISS95				2.40	1.92	1.76	
Effective ion charge	Z_{eff}			1.40	1.34	1.35	
Electron density	$n_e(0)$) 10^19 n	n-3	27.4	26.7	19.0	
Temperature	$T_i(0)$) keV		21	15.8	16.1	
Plasma beta	<β>	%		1.6	3.0	4.1	
Plasma conduction loss	$P_{\rm L}$	MW			290	463	
Diverter heat load	Γ_{div}	MW/m^2			1.6	2.3	
Total capital cost	0	G\$(2003)		4.6	5.6	6.9	
COE	n	nill/kWh		155	106	87	

(Cost evaluation based on the ITER (2002) report)

(3) Optimization of reactor size around *Rc* of 16 m

ITER based cost analyses show Similar weights and costs between Helical and Tokamak reactor magnet systems (FFHR2m1)

Presentation outline toward design optimization

1. Reactor size and cost 2. Minimization of heating power 3. High density ignition and control 4. Large SC magnet system 5. Access to Demo 6. Concluding remarks

IDB Ignition Scenario with SDC

Conventional design

Design parameters			FFHR2m1	SDC
Fusion power	P _F	GW	1.9	
Density lim.improvement			1.5	7.5
H factor of ISS95			1.92	
Electron density	n _e (0)	10^20 m ⁻³	2.4	9.8
Temperature	$T_i(0)$	keV	15.8	6.27
Effective ion charge	Zeff		1.48	1.52
Plasma beta	<β>	%	3.0	2.5
Energy confinem. time	$\tau_{\rm E}$	S	1.9	4.7
Bremsstrahlung loss	PB	MW	57	248
Plasma conduction loss	PL	MW	282	96
Heat load to first wall	$\Gamma_{\rm div}$	MW/m ²	0.06	0.25
Heat load to divertor	Γ _{div}	MW/m ²	1.6	0.54

Divertor heat load is drastically reduced.12/22

New control method in a thermally unstable regime

 $S_{DT}(t)=0$

But,

Proportional-Integration-Derivative (PID) control The error of the fusion power with an opposite sign of $e(P_t) = - (P_{to} - P_t)$ can stabilize the thermal instability through fueling.

$$S_{DT}(t) = S_{DT0} \left\{ e_{DT}(P_f) + \frac{1}{T_{int}} \int_0^t e_{DT}(P_f) dt + T_d \frac{de_{DT}(P_f)}{dt} \right\} G_{fo}(t)$$

O. Mitarai al. Plasma and Fusion Research, Rapid Communications, 2, 021 (2007).

Neutron wall loading is ave. 1.5 MW/m² and peaking factor < 1.3

Presentation outline toward design optimization

1. Reactor size and cost 2. Minimization of heating power 3. High density ignition and control 4. Large SC magnet system 5. Access to Demo 6. Concluding remarks

Base design of CICC magnet system

S. Imagawa et al., in this conference.

Table 1. Design criteria for CIC conductors based on ITER-TF coils.

Items	Design criteria	ITER-TF		
Max. cooling length (m)	< 500	390		
Current (kA)	< 100	68		
Maximum field (T)	< 13	11.8		
SC current density (A/mm ²)	< 300	273		
Coil current density (A/mm ²)	< 30	20.3		
SC material for HC	Nb3Al (*1)	Nb3Sn		
(*1) "react and wind" method can be adopted by managing				
strain during winding within all	out 0.5%.			

Nuclear heating in FFHR2m1

- Max. cooling path is 500 m for the nuclear heat of 1 mW/cm³.
- This value is 5 times larger on the FFHR magnets.
- ✓ Gamma-ray heating is dominant.

 <u>Acceptable level achieved</u>
 ✓ Fast neutron < 1E22 n/m² in 30 years
 ✓ Max. nuclear heating < 0.2 mW/cm³
 ✓ Total nuclear heating ~ 40 kW Cryogenics power ~ 12 MW (1% of P_f)

Indirect cooling system as an alternative with quench protection candidates

K. Takahata et al., 24th SOFT, 2006.

100 kA Superconductor

High effective thermal conductivity
 High mechanical rigidity and strength

Quench protection by external dumping

- Conventional protection circuit using an external resistor τ=20 s
- Six subdivisions V_{max}=10 kV
- Hot spot temperature < 150 K</p>

Cross-sectional structure of the helical coil

Quench protection by internal dumping

- K. Takahata et al., in this conference.
 - Quench back with a secondary circuit
 - to increase a decay time constant
 - to reduce a transient voltage
 - to avoid a serious hot spot

LHD-type support post for FFHR

Design parameters			LHD	FFHR2m1	SDC
Polarity	l		2	2	
Field periods	m		10	10	
Coil pitch parameter	γ		1.25	1.15	
Coil major Radius	R _c	m	3.9	14.0	
Coil minor radius	ac	m	0.98	3.22	
Plasma major radius	R _p	m	3.75	14.0	
Plasma radius	ap	m	0.61	1.73	
Plasma volume	Vp	m ³	30	827	
Blanket space	Δ	m	0.12	1.1	
Magnetic field	B ₀	Т	4	6.18	
Max. field on coils	B _{max}	Т	9.2	13.3	
Coil current density	j	MA/m ²	53	26.6	i
Magnetic energy		GJ	1.64	133	
Fusion power	P _F	GW		1.9	
Neutron wall load	Γ_{n}	MW/m ²		1.5	
External heating power	Pext	MW		80	
α heating efficiency	ηα		2-5-12	0.9	
Density lim.improvement				1.5	7.5
H factor of ISS95				1.92	
Electron density	n _e (0)	10^20 m ⁻³		2.4	9.8
Temperature	T _i (0)	keV		15.8	6.27
Effective ion charge	Zeff			1.48	1.52 -
Plasma beta	<β>	%		3.0	2.5
Energy confinem. time	$\tau_{\rm E}$	S		1.9	4.7
α ash confiment	$\tau_{\alpha}*/\tau_{E}$			3 < 7	
Bremsstrahlung loss	PB	MW		57	248
Plasma conduction loss	PL	MW		282	96
Heat load to first wall	$\Gamma_{\rm div}$	MW/m ²		0.06	0.25
Heat load to divertor	$\Gamma_{\rm div}$	MW/m ²		1.6	0.54
Diverter heat load	$\Gamma_{\rm div}$	MW/m ²		1.6	0.5
Total capital cost		G\$(2003)		5.6	
COE		mill/kWh		106	

LHD experiments

NIA

0

()

0

External heating High energy particle New density limit

Enhancement of τ_{E}

Impurity shielding

He exhaust

Concluding remarks

- 1. Helical reactor is superior in steady state operation and
 - Reduced neutron wall loading by optimization of large reactor size,
 - Minimized heating power by long access time to ignition,
 - High density operation with reduced heat load on divertor.
- 2. Large SC magnet system is <u>conceptually feasible</u>.
- 3. Helical reactor is economically comparable to Tokamak.
- 4. <u>Numerical Test Reactor</u> is planned to Helical Demo.
- 5. <u>Large sized construction</u> is important R&D issue.
- 6. LHD experiments can open <u>new reactor regimes</u>.