Current-driven discharges in the Compact Toroidal Hybrid (CTH) experiment

S. Knowlton, G. Hartwell, J. Hanson, J. Peterson, B. Stevenson *Auburn University, Auburn, Alabama*

OUTLINE:

- Overview of the CTH experiment
- Validation of vacuum configuration; correction of magnetic field errors
- Initial studies of behavior associated with plasma current

Joint 17th International Toki Conference (ITC) on Physics of Flows and Turbulence in Plasmas and 16th International Stellarator/Heliotron Workshop (ISHW) 2007

Research areas of CTH experiment

- Current-driven instabilities/ avoidance of disruptions in stellarators
 - NCSX and, to lesser extent, QPS, will rely on bootstrap current to provide rotational transform for optimization of configuration
 - Bootstrap current influences high-β stellarator equilibria in present experiments
 - previous results from JIPPT-2, W7-A, W7-AS with large fraction of ohmic transform in low shear stellarators
- Determination of experimental magnetic equilibrium in 3-D
 plasma
 - Test V3FIT 3-D equilibrium reconstruction with diagnostic data
 - => status of V3FIT; poster by Hanson et al., this workshop
- Role of magnetic islands in highly variable transform profiles
 - Minimize resonant field errors at rational surfaces by design and active correction

CTH: *l* / M = 2 / 5 torsatron

5 field periods; circular Inconel vacuum vessel

$$\begin{split} R_{o} &= 0.75 \text{ m}, \text{ R/<a> } \geq 4 \\ B_{o} &\leq 0.7 \text{ T} \\ I_{p} &\leq 40 \text{ kA}; \Delta\iota \leq 0.5 \end{split}$$

 P_{in} = 12 kW ECRH @18GHz B₀ => 0.64 T (1st harmonic) 60 kW OH

Vacuum $\iota(a): 0.05 - 0.6$

Discharge duration: 0.5 s w/ OH: 0.1 s

 $< n_e > = 0.2 - 1 \times 10^{19} \text{ m}^{-3}$ Single-channel, radial path interferometer

- Main vertical field coil in series with l / M = 2/5 HF field winding
- Torsatron HF coil decoupled from ohmic flux with external decoupler

- Main vertical field coil in series with l / M = 2/5 HF field winding
- Trim vertical field with ohmic decoupler
- Toroidal field coils for variation
 of rotational transform

Main vertical field coil in series with l / M = 2/5 HF field winding

Trim vertical field with ohmic decoupler

Toroidal field coils for variation of rotational transform

Shaping (quadrupole) coils for shear variation; also has ohmic decoupler

Main vertical field coil in series with l / M = 2/5 HF field winding

Trim vertical field with ohmic decoupler

Toroidal field coils for variation of rotational transform

Shaping (quadrupole) coils for shear variation; also with ohmic decoupler

Ohmic coil stack powered by capacitor banks

Circular vacuum vessel

Main vertical field coil in series with l / M = 2/5 HF field winding

Trim vertical field with ohmic decoupler

Toroidal field coils for variation of rotational transform

Shaping (quadrupole) coils for shear variation; also with ohmic decoupler

Ohmic coil stack powered by capacitor banks

15 Error correction coils mounted on ports

Additional PF coils for vertical positioning if necessary

CTH exhibits good vacuum flux surfaces

Low aspect ratio configuration achieved at rotational transform ($\iota_{edge} \le 0.2$)

Composite photo of measured flux surfaces

Comparison with of original coil model with experiment.

Field-mapping of magnetic axis applied to correction of coil positions

Required corrections to coil model are minor

Optimization of HF/VF coils includes $\underline{B}_{\underline{EXT}}$, poloidal coil positions and radii, <u>helical coil winding law</u>

Magnetic islands on rational surfaces

With auxiliary TF coils, vacuum rotational transform can be raised to $\iota(a) \le 0.6$ $\iota = 1/3, 2/5, 1/2$ rational surfaces exhibit islands at low fields for field mapping.

n/m = 1/3 static magnetic island

Island size decreases with increasing field

- Observed islands at low mapping currents only partly due to winding errors
- Projects to island width ≤ 2 cm at operating currents of 5 kA (B= 0.5 - 0.7 T)

Island reduced by application of primary & secondary corrections

Fix Stellarator procedure (Hanson)

- Determine phase of island O or X-points ψ= (mθ_f - nφ_f) in flux coordinates.
- Compute correction field of opposite phase; generate vector of N elements
 N = no. of independent correction coils
- Complete minimization by applying additional correction <u>orthogonal</u> to original vector.

n = 1 correction applied with 5 coils

Ohmic currents induced in ECRH target plasmas

- Ohmic heating pulse applied to ECRH plasmas at fundamental resonant field of $B_0 = 0.64$ T.
- Density increases with ohmic current
- Discharges with $\iota_{tot}(a) > 0.7$ obtained with $i_{VAC}(a) \sim 0.2$

Current-driven plasmas show hesitations during current rise

- Hesitations occur at/near rational values of edge transform.
 - Vacuum rotational transform varied with auxiliary toroidal field coils.
- Some unstable behavior observed during main phase of ohmic discharge
 - Current relaxations with bursty precursor MHD oscillations often occur
 - May be associated with internal n/m = 1/3, 1/2 islands, possible nonmonotonic transform profiles
 - address in future with shaping of vacuum shear.
 - Despite unstable behavior, no complete current collapse observed

Plasma current for 2 different vacuum transforms

Data represent plasma current values at hesitations

Current-rise hesitations observed on magnetic and other diagnostics

- 8-segment poloidal Rogowski coil shows slight outward shift of current centroid during hesitation, suggesting narrowing of current profile when rational surface in contact with edge.
 - V3FIT used in predictive mode to model magnetic diagnostic responses from VMEC equilibrium; from relative measurements estimate outward shift of 5 mm during hesitation
 - Further calibration work of diagnostics required for reconstruction
- In contrast to later part of discharge, no bursty MHD activity observed during current rise hesitations
- Decreases in line-averaged density and core SXR emission during hesitations

For progress on V3FIT reconstruction, see poster by Hanson et al, Wednesday afternoon

Horizontally-viewing SXR profile during current rise

Discussion

 Expect profiles to evolve from positive (stellarator) shear through doublevalued to negative as ohmic current profile peaks on resistive time scale.

4 msec time scale consistent with assumed $< T_e > \sim 100 \text{ eV}, Z_{eff} \sim 2$

- Early behavior (t< 4 ms) consistent with positive shear profiles
- Hypothesis: island at edge rational surface causing narrowing of current channel, density drop. Recovery occurs as rational surface moves inward

Model transform profiles during current-rise

Presently testing applying n = 1 perturbation with error correction coils to determine effect of variable static island on current-rise behavior

Concluding remarks

• Field-mapping results used to adjust model of equilibrium coils

- SVD fitting procedure indicates deviations of up to 1.5 mm in helical coil radius, 1 mm-scale deviations in other winding law parameters, and external fields of ≤ 2 gauss.
- Similar procedures performed on other coil sets
- Low order islands observed in vacuum configuration corrected
 - Experiments applying static n = 1 perturbation of variable amplitude to plasma discharges are underway.
- Hesitations in current-rise and density decreases associated with rational values of edge transform.
 - Otherwise, current-rise plasmas are stable while transform profile remains monotonic.
 - -will vary vacuum shear in further studies.

Field-mapping set-up on CTH

camera) rotated toroidally by two field periods to test for n=1 shifts in equilibrium.

Movable phosphor-coated wand

_

Unstable behavior following current rise

- Plasma current shows relaxation-type behavior
- Bursty MHD oscillations on partial Rogowski loops
- Soft X-ray emission increases after relaxation
 - Runaway generation
- Disruptive spikes on loop voltage
- Drop in stored energy following relaxation