

Searching for a Flux Expansion Divertor in TJ-II.

F. Castejón^{1,2}, A. López-Fraguas¹, A. Tarancón^{2,3} and J. L. Velasco^{2,3}

Lab. Nacional de Fusión –Asociación Euratom/Ciemat, 28040-Madrid, Spain
Instituto de Biocomputación y Física de Sistemas Complejos, 50009-Zaragoza, Spain
Universidad de Zaragoza, 50009-Zaragoza, Spain

- Introduction and Motivation.
- The chosen configuration in TJ-II.
- ISDEP code and the plasma conditions.
- Results.
- Conclusions and future work.

Divertor Concepts

Power exhaust and density control are mandatory for a stellarator-reactor (R. König et al. PPCF,2002). Concepts:

- X- point (Tokamaks).
- Helical Divertor.
- Island Divertor.
- Flux Expansion Divertor
- The goals:
 - Concentrate plasma-wall interaction in favourable zones (with plates and pumping).
 - Diminish the incoming fluxes on the plates (ad hoc magnetic configuration; increasing the plate size).
 - Hinder the neutrals to enter the plasma: Long path or steep gradient pressure profile.

Helical Divertor

LABORATORIO NACIONAL de FUSIÓN ASOCIACIÓN EURATOM-CIEMAT

LHD (N. Oyabu et al. nf 1994)^{(0 = 18°}

X-point

Figure 3. Plasma cross-section. The cross-sections on the right were produced on JET with the X-point just at the limit of the plasma wall. In these conditions, H-modes have been obtained. On the right, the plasma cross-section shows the approximate position of an X-point limiter in red; this plasma cross-section corresponds to an ITER cross-section shape, in fact the plasma shown in figure 2. P. Rebut. PPCF 2006

Flux Expansion Divertor: NCSX

- Most flux expansion at 0^o best for divertor plates
- Green field lines launched at inner midplane
- Red field lines launched at outer midplane

- Helical Divertor and Island Divertor require robust magnetic topology, almost unchanged during plasma operation.
- Those concepts are not suitable for:
 - -Configurations based on bootstrap current (NCSX, QPS).
 - -Equilibrium topology strongly dependent on beta.
 - -Flexible devices that can vary the rotational transport profiles (TJ-II).
- Flux Expansion Divertor could be the solution.

- Large flux expansion configurations do exist.
- No ergodic zones appear in TJ-II. Look for a strategy for creating them.
- The inner part of the configuration should be unaffected.
- Lithium evaporation onto these target plates?
- Pump behind plates?

Ciemat Centro de Investigaciones Energéticas. Medioambientales y Tecnologicas LABORATORIO NACIONAL de FUSIÓN

ASOCIACIÓN EURATOM-CIEMAT

The Magnetic Configuration

- Poincaré plots of the magnetic surfaces (rotated 4ϕ to be compared).
- Maximum flux expansion around $\phi = \pi/4$ and $\theta = \pi/2$. Although wide ϕ -range envisaged.

ISDEP code: Examples of 3D orbits

Sentro de Investidaciones

Ciemat Centro de Investigaciones Energéticas Medioambientales v Tecnológicas

• Following particle trajectories rather than field lines (10⁵-10⁶ particles). Grid computing inside EGEE. (F. Castejón et al. PPCF 2007)

- Guiding centre approximation.
- i-i & i-e Coulomb collisions.
- **Considering electrostatic** potential.
- No assumptions on orbit size or diffusive transport #10

Measured Profiles (used in the simulatiuon)

- Two regimes: low density ECRH plasma and high density NBI plasma.
- Simulations valid for a wide range of parameters.
- n_e and T_e, from Thomson Scattering.
- T_i from CX-NPA.
- Potential from HIBP.

The Map of Losses

- Maximum plasmawall interaction on the groove.
- PWI close to the plasma bulk.
- Up-down asymmetric flux.

Obtaining the Map of Fluxes

- We locate $N_{\phi} \ge N_{\theta} = 4 \ge 32 = 128$ plates in each period.
- A single plate (ρ,i,j):

$$\rho > \rho_0; \quad \frac{2\pi}{N_{\phi}}i < \phi < \frac{2\pi}{N_{\phi}}(i+1); \quad \frac{2\pi}{N_{\theta}}j < \theta < \frac{2\pi}{N_{\theta}}(j+1)$$

- θ rotated -4 ϕ with respect to the horizontal plane (groove-magnetic axis line: $\theta=0$).
- The toroidal range of $\theta = -\pi/2$:

Flux Map: ECRH

- The plates are independent.
- The shadow effect is not considered in this calculation.
- Clear poloidal and toroidal structure.
- Small changes for ρ>1.

Flux Map: NBI

#15

Flux on the chamber: ECRH

- A promising configuration for Flux Expansion Divertor has been found in TJ-II.
- ISDEP code has been used to calculate the maps of the fluxes in ECRH and NBI plasmas.
- The flux map shows a strong poloidal structure: It is possible to locate divertor plates to suppress a large fraction of the total flux onto the wall.
- The flux on the groove can be strongly reduced, which is critical to diminish the plasma-wall interaction in TJ-II.

- Refine the design of the plates.
- Explore the possibility of creating an ergodic layer outside the LCFS.
- Estimate the recycling & transport of neutrals.
- Consider the Li coating?
- Thinking of experiments.

