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Outline

• Transport in HSX plasma
– Mostly anomalous

• Modeling stellarator turbulent transport – stealing from 
tokamaks (Weiland ITG/TEM model)
– Using 3D linear gyrokinetics (GS2) to justify approximations using 

tokamak model

• 1-D predictive transport modeling of HSX profiles and 
confinement

• Conclusions



HSX is Helically Symmetric in |B|
• Quasihelical symmetry (QHS) reduces direct loss orbits (IAEA 2002), flow 

damping (PRL, 2005), and neoclassical transport (PRL, 2007)

Typical plasma parameters
• <ne> ≤ 6 × 1012 cm-3

• Te ~ 0.5 - 2.5 keV >> Ti ~ 20-100 eV

→ Opportunity to study electron heat transport in LMFP
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Reduction of Core Neoclassical Transport is 
Observed with Quasihelical Symmetry

• Similar Te achieved in QHS with half the power of Mirror
→ Neoclassical χe reduced in core via quasihelical symmetry (reduced 1/ν ripple 

transport)

• Transport is anomalous over most of minor radius



Modeling Anomalous Transport
• “State of the art” drift wave turbulent transport models (ITG/TEM/ETG) exist for 

tokamaks (MMM / Weiland, IFS-PPPL, GLF23, TGLF)

• These are quasi-linear transport models (γlin/k⊥2) that have been tweaked to best 
match non-linear simulations



Modeling Anomalous Transport
• “State of the art” drift wave turbulent transport models (ITG/TEM/ETG) exist for 

tokamaks (MMM / Weiland, IFS-PPPL, GLF23, TGLF)

• These are quasi-linear transport models (γlin/k⊥2) that have been tweaked to best 
match non-linear simulations

• A number of 3D linear & non-linear stability calculations (ITG/TEM/ETG) now 
exist (Rewoldt et al.; Kendl & Wobig; Jost et al.; Belli et al.; Jenko, Kendl, Merz; Rafiq, Nadeem, et al.; Kuroda et al.; 
Sugama et al.; Yamagishi et al.; + others)

• However, no anomalous (ITG/TEM/ETG) transport models (usable for predictive 
simulations) have been formally developed for generic 3D stellarator
configurations

→ No non-linear simulations for HSX (previous linear calculations by Jost; Rafiq; 
Rewoldt)



Modeling Anomalous Transport
• “State of the art” drift wave turbulent transport models (ITG/TEM/ETG) exist for 

tokamaks (MMM / Weiland, IFS-PPPL, GLF23, TGLF)

• These are quasi-linear transport models (γlin/k⊥2) that have been tweaked to best 
match non-linear simulations

• A number of 3D linear & non-linear stability calculations (ITG/TEM/ETG) now 
exist (Rewoldt et al.; Kendl & Wobig; Jost et al.; Belli et al.; Jenko, Kendl, Merz; Rafiq, Nadeem, et al.; Kuroda et al.; 
Sugama et al.; Yamagishi et al.; + others)

• However, no anomalous (ITG/TEM/ETG) transport models (usable for predictive 
simulations) have been formally developed for generic 3D stellarator
configurations

→ No non-linear simulations for HSX (previous linear calculations by Jost; Rafiq; 
Rewoldt)

REMAINDER OF THIS TALK

• Test of the axisymmetric Weiland ITG/TEM anomalous transport model for 
dominant electron heated HSX stellarator plasmas

• Beginning tests of the validity of the Weiland ITG/TEM model against 3D 
gyrokinetic linear stability calculations (GS2)



GS2 Is Used For Stellarator Microstability
• Flux tube gyrokinetic code in ballooning 

coordinates (Kotchenreuther et al., 1995; Dorland 
et al., 2000)

– Initial value (can do non-linear)

– 3D equilibrium input (shaped tokamak or 
stellarator, Belli et al., 2001)

– Electromagnetic (β)

– Momentum conserving collision operator

– No assumptions on k⊥ (ITG/TEM/ETG)

• Used for 12+ years by 30+ users for 
analysis on numerous tokamaks

• Benchmarked in numerous scenarios, 
including stellarator configurations 
(NCSX, HSX)

• We are using GS2 electrostatically for 
linear calculations → compare to 
Weiland model

QHS linear stability
ηe=ηi=2.66

NCSX linear stability
(Belli et al., APS 2001)

Rewoldt et al.
(2005)



What is the Weiland Model?
• A linear fluid model for toroidal ITG and TEM instabilities, including:

• Multiple ion ITG
• Collisionless TEM
• Collisional stabilization of TEM
• Electromagnetic (finite β)
• Parallel ion dynamics (momentum transport)

• Heat and particle transport predictions come from quasi-linear mixing length 
estimates which compare well to limited non-linear simulations (Nordman et al., 1990; 
Dimits et al., 2000)

• Easy to solve (quick) – useful for predictive transport modeling
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• Heat and particle transport predictions come from quasi-linear mixing length 
estimates which compare well to limited non-linear simulations (Nordman et al., 1990; 
Dimits et al., 2000)

• Easy to solve (quick) – useful for predictive transport modeling

• For HSX, using collisionless electrostatic form including particle, and ion and 
electron heat transport

• Geometry parameters required are trapped electron fraction (ft) and 
“appropriate” toroidal drift scale length (LB = R for a tokamak)

• What are the “appropriate” geometry parameters for HSX?
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Microstability Estimates Can Be Made Using Axisymmetric
Models With “Quasisymmetric” Approximation

• 3D stability calculations find most unstable 
eigenmodes (ITG/TEM) ballooning in the low field, 
bad curvature region in HSX (also seen in Rewoldt 2005; 
Rafiq 2006)

• Dominant particle trapping comes from helical 
ripple, εH (0.14⋅r/a = 1.4⋅r/R)

• Reduced connection length, Lc = qeffR = R/|N-mι| 
≈ R/3, leads to very low collisionality electrons 
across the minor radius → CTEM (Te >> Ti)

• Normal curvature rotates helically, with bad 
curvature following the location of low field 
strength

• κN,max ~ 1/45 cm-1 ≠ 1/R   (R=120 cm)
• To account for toroidal drifts in drift wave models, 

R → R/3

1.0

Rq
v
/

eff

T2/1
H

He
e

e

≤
ε

εν
=ν∗



Comparison Of Linear Growth Rates Between 
Weiland Model And 3D Gyrokinetics

• Weiland ITG/TEM model is used with approximations:
ft ≈ ,    κN & |∇B|/B ~ 1/R → 3/R

• Linear growth rates from Weiland and 3D GS2 are in agreement near 
experimental gradients (a/Ln, a/LTe = 2 → 5, largest difference ~30%)

• Larger deviations exist near marginal stability
• Weiland growth rates 2× smaller without “quasisymmetric” approximation

HT 2  2 ε→ε

GS2 - HSX Weiland - HSX Weiland - TOK



Predictive 1D Transport Modeling Is Performed 
Using “Multi-Mode” Approach

• (χ,D) = (χ,D)neoclassical + (χ,D)anomalous
– Neoclassical from DKES (Hirshman et al., 1986)

– Anomalous from Weiland ITG/TEM and RBM (MMM, Bateman et al., Phys. Plasmas, 1998)

• Electron energy source from ECRH
– Profile from ray tracing
– Total absorbed power from measurement

• Particle source adjusted to minimize difference in ne (within factor of ~2 of DEGAS 
calculations)

• Radiation, electron-ion coupling negligibly small
• Boundary conditions from experiment

• 1D flux-surface averaged transport equations integrated
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Density Profiles In Good Agreement
• Core Te underpredicted in QHS
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Density Profiles In Good Agreement
• Core Te underpredicted in QHS
• Global confinement predicted within 10%

Simulation

Experiment

ρ
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Predicted Confinement Time Scaling Close To 
Experiment

• Experimental power scaling slightly weaker than simulation
τE

exp,diamagnetic ~ P-0.36

τE
sim ~ P-0.57

QHS
B = 1 T 
<n> ~ 4 × 1012 cm-3



3D Linear Stability Similar Between QHS & 
Mirror

• |B| no longer symmetric
• Local geometry similar in ballooning 

region
→ Results in similar growth rates
• Similar to results with approximate 

DTEM response in HSX (Rafiq & 
Hegna, Phys. Plasmas 2006)

GS2 (3D)

Mirror

ρ = 0.86



Profiles In Reasonable Agreement for Mirror
• Overall confinement overpredicted at low power

Simulation

Experiment
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Summary

• Anomalous transport is significant in both quasisymmetric
(QHS) and non-symmetric (Mirror) configurations
– With low collisionality electrons, CTEM expected to be dominant 

instability

• First test of Weiland ITG/TEM model for dominant electron 
heated stellarator plasmas
– With “quasisymmetric” approximations, linear growth rates from 

Weiland model agree within ~30% of 3D gyrokinetic (GS2) linear 
stability calculations (near experimental gradients)

– Density profiles and QHS energy confinement times predicted 
within ~10%

– Electron temperature profiles further off (~40%)

Δγlin < 30%

σne,στ < 10%

σTe < 40%
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