Modeling Of Anomalous Transport in ECRH Plasmas At HSX

Walter Guttenfelder

HSX Plasma Laboratory Electrical & Computer Engineering, UW-Madison

Acknowledgements: Travel Support from NIFS & ITC17/ISHW2007 - Thank You!!

ITC17/ISHW2007 Ceratopia Toki, Gifu, Japan October 17, 2007

Outline

- Transport in HSX plasma
 - Mostly anomalous
- Modeling stellarator turbulent transport stealing from tokamaks (Weiland ITG/TEM model)
 - Using 3D linear gyrokinetics (GS2) to justify approximations using tokamak model
- 1-D predictive transport modeling of HSX profiles and confinement
- Conclusions

HSX is Helically Symmetric in |B|

• Quasihelical symmetry (QHS) reduces direct loss orbits (IAEA 2002), flow damping (PRL, 2005), and neoclassical transport (PRL, 2007)

Typical plasma parameters

- $< n_e > \le 6 \times 10^{12} \text{ cm}^{-3}$
- $T_e \sim 0.5 2.5 \text{ keV} >> T_i \sim 20-100 \text{ eV}$
- \rightarrow Opportunity to study electron heat transport in LMFP

$$v_{*e} = \frac{v_e / \epsilon_H}{\epsilon_H^{1/2} \frac{v_{T_e}}{q_{eff} R}} \le 0.1$$

Reduction of Core Neoclassical Transport is Observed with Quasihelical Symmetry

- Similar T_e achieved in QHS with half the power of Mirror
- \rightarrow Neoclassical χ_e reduced in core via quasihelical symmetry (reduced 1/v ripple transport)

• Transport is anomalous over most of minor radius

Modeling Anomalous Transport

- "State of the art" drift wave turbulent transport models (ITG/TEM/ETG) exist for tokamaks (MMM / Weiland, IFS-PPPL, GLF23, TGLF)
- These are quasi-<u>linear</u> transport models (γ_{lin}/k_{\perp}^2) that have been tweaked to best match non-linear simulations

Modeling Anomalous Transport

- "State of the art" drift wave turbulent transport models (ITG/TEM/ETG) exist for tokamaks (MMM / Weiland, IFS-PPPL, GLF23, TGLF)
- These are quasi-<u>linear</u> transport models $(\gamma_{lin}/k_{\perp}^2)$ that have been tweaked to best match non-linear simulations
- A number of 3D linear & non-linear stability calculations (ITG/TEM/ETG) now exist (Rewoldt et al.; Kendl & Wobig; Jost et al.; Belli et al.; Jenko, Kendl, Merz; Rafiq, Nadeem, et al.; Kuroda et al.; Sugama et al.; Yamagishi et al.; + others)
- However, no anomalous (ITG/TEM/ETG) transport models (usable for predictive simulations) have been formally developed for generic 3D stellarator configurations
- → No non-linear simulations for HSX (previous linear calculations by Jost; Rafiq; Rewoldt)

Modeling Anomalous Transport

- "State of the art" drift wave turbulent transport models (ITG/TEM/ETG) exist for tokamaks (MMM / Weiland, IFS-PPPL, GLF23, TGLF)
- These are quasi-<u>linear</u> transport models (γ_{lin}/k_⊥²) that have been tweaked to best match non-linear simulations
- A number of 3D linear & non-linear stability calculations (ITG/TEM/ETG) now exist (Rewoldt et al.; Kendl & Wobig; Jost et al.; Belli et al.; Jenko, Kendl, Merz; Rafiq, Nadeem, et al.; Kuroda et al.; Sugama et al.; Yamagishi et al.; + others)
- However, no anomalous (ITG/TEM/ETG) transport models (usable for predictive simulations) have been formally developed for generic 3D stellarator configurations
- → No non-linear simulations for HSX (previous linear calculations by Jost; Rafiq; Rewoldt)

REMAINDER OF THIS TALK

- Test of the axisymmetric Weiland ITG/TEM anomalous transport model for dominant electron heated HSX stellarator plasmas
- Beginning tests of the validity of the Weiland ITG/TEM model against 3D gyrokinetic <u>linear stability</u> calculations (GS2)

GS2 Is Used For Stellarator Microstability

- Flux tube gyrokinetic code in ballooning coordinates (Kotchenreuther et al., 1995; Dorland et al., 2000)
 - Initial value (can do non-linear)
 - 3D equilibrium input (shaped tokamak or stellarator, Belli et al., 2001)
 - Electromagnetic (β)
 - Momentum conserving collision operator
 - No assumptions on k_{\perp} (ITG/TEM/ETG)
- Used for 12+ years by 30+ users for analysis on numerous tokamaks
- Benchmarked in numerous scenarios, including stellarator configurations
 (NCSX, HSX)
- We are using GS2 electrostatically for linear calculations → compare to Weiland model

What is the Weiland Model?

- A linear fluid model for toroidal ITG and TEM instabilities, including:
 - Multiple ion ITG
 - Collisionless TEM
 - Collisional stabilization of TEM
 - Electromagnetic (finite β)
 - Parallel ion dynamics (momentum transport)
- Heat and particle transport predictions come from quasi-linear mixing length estimates which compare well to limited non-linear simulations (Nordman et al., 1990; Dimits et al., 2000)
- Easy to solve (quick) useful for predictive transport modeling

What is the Weiland Model?

- A linear fluid model for toroidal ITG and TEM instabilities, including:
 - Multiple ion ITG
 - Collisionless TEM
 - Collisional stabilization of TEM
 - Electromagnetic (finite β)
 - Parallel ion dynamics (momentum transport)
- Heat and particle transport predictions come from quasi-linear mixing length estimates which compare well to limited non-linear simulations (Nordman et al., 1990; Dimits et al., 2000)
- Easy to solve (quick) useful for predictive transport modeling
- For HSX, using collisionless electrostatic form including particle, and ion and electron heat transport
- Geometry parameters required are trapped electron fraction (f_t) and "appropriate" toroidal drift scale length ($L_B = R$ for a tokamak)

$$\begin{bmatrix} \omega_{\rm r}, \gamma \\ \chi_{\rm e}, \chi_{\rm i}, D \end{bmatrix} = \frac{\rho_{\rm s}^2 c_{\rm s}}{L_{\rm n}} \cdot F\left(\frac{a}{L_{\rm Te}}, \frac{a}{L_{\rm Ti}}, \frac{a}{L_{\rm n}}, \frac{a}{L_{\rm B}}, \frac{T_{\rm e}}{T_{\rm i}}, f_{\rm t}, k_{\perp} \rho_{\rm s}\right)$$

• What are the "appropriate" geometry parameters for HSX?

Microstability Estimates Can Be Made Using Axisymmetric Models With "Quasisymmetric" Approximation

- 3D stability calculations find most unstable eigenmodes (ITG/TEM) ballooning in the low field, bad curvature region in HSX (also seen in Rewoldt 2005; Rafiq 2006)
- Dominant particle trapping comes from helical ripple, ε_H (0.14·r/a = 1.4·r/R)
- Reduced connection length, $L_c = q_{eff}R = R/|N-m\iota| \approx R/3$, leads to very low collisionality electrons across the minor radius $\rightarrow CTEM (T_e >> T_i)$

$$v_{*e} = \frac{v_e / \varepsilon_H}{\varepsilon_H^{1/2} \frac{v_{T_e}}{q_{eff}R}} \le 0.1$$

- Normal curvature rotates helically, with bad curvature following the location of low field strength
- $\kappa_{N,max} \sim 1/45 \text{ cm}^{-1} \neq 1/R$ (R=120 cm)
- To account for toroidal drifts in drift wave models, $R \rightarrow R/3$

Comparison Of Linear Growth Rates Between Weiland Model And 3D Gyrokinetics

- Weiland ITG/TEM model is used with approximations: $f_t \approx \sqrt{2\epsilon_T} \rightarrow \sqrt{2\epsilon_H}$, $\kappa_N \& |\nabla B|/B \sim 1/R \rightarrow 3/R$
- Linear growth rates from Weiland and 3D GS2 are in agreement near experimental gradients (a/L_n , $a/L_{Te} = 2 \rightarrow 5$, largest difference ~30%)
- Larger deviations exist near marginal stability
- Weiland growth rates 2× smaller without "quasisymmetric" approximation

Predictive 1D Transport Modeling Is Performed Using "Multi-Mode" Approach

- $(\chi, D) = (\chi, D)_{\text{neoclassical}} + (\chi, D)_{\text{anomalous}}$
 - Neoclassical from DKES (Hirshman et al., 1986)
 - Anomalous from Weiland ITG/TEM and RBM (MMM, Bateman et al., Phys. Plasmas, 1998)
- Electron energy source from ECRH
 - Profile from ray tracing
 - Total absorbed power from measurement
- Particle source adjusted to minimize difference in n_e (within factor of ~2 of DEGAS calculations)
- Radiation, electron-ion coupling negligibly small
- Boundary conditions from experiment
- 1D flux-surface averaged transport equations integrated

$$\frac{\partial}{\partial t}n + \frac{1}{V'}\frac{\partial}{\partial \rho}V'\left(-D\frac{\partial n}{\partial \rho}\left\langle\left|\nabla\rho\right|^{2}\right\rangle + V^{(n)}n\left\langle\left|\nabla\rho\right|\right\rangle\right) = \sum S(\rho)$$

$$\frac{3}{2}n\frac{\partial}{\partial t}T + \frac{1}{V'}\frac{\partial}{\partial \rho}V'\left(-n\chi\frac{\partial T}{\partial \rho}\left\langle\left|\nabla\rho\right|^{2}\right\rangle + V^{(nT)}nT\left\langle\left|\nabla\rho\right|\right\rangle\right) = \sum \frac{1}{e}P(\rho)$$

Density Profiles In Good Agreement

• Core T_e underpredicted in QHS

Density Profiles In Good Agreement

- Core T_e underpredicted in QHS
- Global confinement predicted within 10%

ITER Physics Basis Figures of Merit (1999)

STD
$$(n_e) = \frac{\sqrt{\frac{1}{N} \sum_{j} (n_e^{sim}(\rho_j) - n_{e,j}^{exp})^2}}{\sqrt{\frac{1}{N} \sum_{j} (n_{e,j}^{exp})^2}} = 9.1\%$$

STD
$$(T_e) = \frac{\sqrt{\frac{1}{N} \sum_{j} (T_e^{sim}(\rho_j) - T_{e,j}^{exp})^2}}{\sqrt{\frac{1}{N} \sum_{j} (T_{e,j}^{exp})^2}} = 40\%$$

P _{ECRH} (kW)	τ ^{exp} (ms)	τ ^{sim} (ms)	$\Delta \tau / \tau^{exp}$
26	3.0	3.3	10%
44	2.6	2.4	-8%
70	1.9	1.9	0%
100	1.6	1.5	-6%

Predicted Confinement Time Scaling Close To Experiment

• Experimental power scaling slightly weaker than simulation

QHS B = 1 T <n> ~ 4×10^{12} cm⁻³

3D Linear Stability Similar Between QHS & Mirror

- |B| no longer symmetric
- Local geometry similar in ballooning region
- \rightarrow Results in similar growth rates
- Similar to results with approximate DTEM response in HSX (Rafiq & Hegna, Phys. Plasmas 2006)

Profiles In Reasonable Agreement for Mirror

• Overall confinement overpredicted at low power

STD	(n _e)	=	11%
-----	-------------------	---	-----

$$STD(T_{e}) = 30\%$$

P _{ECRH} (kW)	τ ^{exp} (ms)	τ ^{sim} (ms)	$\Delta \tau / \tau^{\text{exp}}$
26	1.9	3.1	63%
44	1.9	2.4	26%
70	1.6	1.8	13%
100	1.6	1.6	0%

Summary

- Anomalous transport is significant in both quasisymmetric (QHS) and non-symmetric (Mirror) configurations
 - With low collisionality electrons, CTEM expected to be dominant instability
- First test of Weiland ITG/TEM model for dominant electron heated stellarator plasmas
 - With "quasisymmetric" approximations, <u>linear growth rates</u> from Weiland model agree within ~30% of 3D gyrokinetic (GS2) linear stability calculations (near experimental gradients)
 - Density profiles and QHS energy confinement times predicted within ~10%
 - Electron temperature profiles further off (~40%)

