Inter-linkage of transports and its bridging mechanism

Katsumi Ida National Institute for Fusion Science

17th International Toki Conference 15-19 October 2007, Toki

OUTLINE

1 Introduction

- 2 particle pinch and impurity exhaust
- 3 spontaneous rotation
- 4 T and ∇ T dependence of heat transport
- 5 Non-local transport phenomena

6 Summary

Transport in plasma

Transport matrix

	\sim								
particle	Γ		D	-	-	-	-	∇n_{e}	→ Non-Diffusive
toroidal momentum	P _{\$\$}		-	$\mu_{\phi}nm_{i}$	-	-	-	∇V_{ϕ}	→ Non-Diffusive
Poloidal momentum	P _θ		-	-	$\mu_\theta nm_i$	-	-	∇V_{θ}	
ion heat	Q _{i,}	=	-	-	-	$n\chi_{i,}$	-	∇T_i	→ Diffusive
electron heat	Q _{e,}		_	-	-	-	$n\chi_e$	∇T_{e}	→ Diffusive

6 radial fluxes are expressed by 5 x 5 transport Matrix + Current diffusion equation

5 Diagonal	$\Gamma = \mathbf{D} \nabla \mathbf{n}$	$Q_e/n_e = \chi_e \nabla T_e$
coefficients are determined	$P_{\phi}/(m_in_i) = \mu_{\phi} \nabla V_{\phi}$	$Q_i / n_i = \chi_i \nabla T_i$
by turbulence	$P_{\theta}/(m_{i}n_{i}) = \mu_{\theta} \nabla V_{\theta}$	

particle, momentum and heat transport

Diffusive and non-diffusive transport

Particle transport

Particle transport diffusive term

of T^{α} where $\alpha \sim 1$.

K.Tanaka Nucl. Fusion 46 (2006) 110

Non-diffusive term of particle flux

Thermo diffusion

Wendelstein 7-AS

Thermo diffusion term is comparable to diffusion term

pinch

Inward Pinch term is significant $u/D_{11} = -12.5 \text{ m}^{-1}$

U.Stroth Phys. Rev. Lett. 82 (1999) 928

Magnetci field curvature pinch

Particle pinch due to magnetic shear is observed

G.T.Hoang, Phys. Rev. Lett. 93 (2004) 135003

Impurity hole evidence of strong outward flux due to Ti gradient?

Impurity hole is observed in the plasma with peaked ion temperature
→ Suggest a strong coupling between Ti gradient and impurity outward flux

Momentum transport

Parallel and perpendicular viscosity (diffusive term)

K.Ida Phys. Rev. Lett. 67 (1991) 58

Physical mechanism determining spontaneous flows

Non-diffusive momentum transport in tokamak

K.Nagashima, Nucl Fusion 34 (1994) 449

K.Ida, Phys Rev Lett 74 (1995) 1990, J.Phys.Soc.Jpn 67 (1998) 4089

Spontaneous toroidal at edge and core

Coupling between poloidal and toroidal rotaion is observed

Edge (helical symmetry dominant) \rightarrow ctr rotation for E_r>0 Core (toroidal effect dominant) \rightarrow co rotation for E_r>0

M.Yoshinuma ITC17 O -12 Friday

Sign of non-diffusive viscosity

Tokamak : negative $E_r \rightarrow$ counter spontaneous flow V=1.3 E_r/B_{θ} Helical : positive Er \rightarrow counter spontaneous flow V=0.16 E_r/B_{θ}

K.Ida, Plasma Phys. Control. Fusion 44 (2002) 362

Why the spontaneous rotation depends on E_r in tokamak

Why the non-diffusive terms has E_r dependence?

 $\Gamma_{\rm M} = m_{\rm i} n_{\rm i} [-\mu^{\rm D} dv_{\phi}/dr + \mu^{\rm N} (v_{\rm th}/T_{\rm i})(eE_{\rm r})] = -(1/r) \int f_{\phi} r dr$

Non-diffusive term can be expressed as toroidal force which proportional to E_r shear

$$\mu^{N} = c_{sym}(1/B_{\theta}) = c_{sym}qR/(rB_{\phi})$$
$$f_{\phi}^{spon} = (c_{sym}eqR/B_{\phi})(v_{th}/T_{i})(1/r)(dE_{r}/dr)$$
$$\sim (c_{sym}eqRv_{th}/T_{i})(d\omega_{ExB}/dr)$$

In tokamak

Toroidal momentum is produced by symmetry breaking of non-zero $\langle k \| \rangle$.

In stellarator

Because of the asymmetry of magnetic field, E_r and spontaneous flow are produced by ripple loss too.

O.D.Gurcan Phys. Plasmas 14 (2007) 042306

Evidence of turbulence driven perpendicular and parallel Reynolds stress

Radial-poloidal component of the Reynolds stress due to turbulence is observed in JET

C.Hidalgo, Plasma Phys. Control. Fusion 48 (2006) S169

In TJ-II stellarator, significant radialparallel component of the Reynolds stress, which drives spontaneous parallel flow is observed

B.Concalves, Phys. Rev. Lett. 96 (2006) 145001

Heat transport

T_e and grad-T_e dependence of transport in axisymmetric and non-axisymmetric system

F Ryter et. al., Plasma Phys. Control. Fusion 48 (2006) B453

Bifurcation of transport between week and strong T_e dependence

K.Ida, Phys. Rev. Lett. 96 (2006) 125006

at different radii

→ Suggest strong coupling of turbulence between at the two location separated through meso-scale flow
N.Tamura,, Nucl. Fusion 47, (2007) 4495

Summary

The transport between particle, momentum and heat fluxes are liked through the non-diffusive term of transport

1 <u>Non-diffusive term of particle transport</u> is driven by ∇Te , ∇T_i (with strong relation with E_r) and magnetic field curvature.

2 <u>Non-diffusive term of momentum transport</u>, which drive spontaneous rotation, is driven by E_r shear and viscosity tensor. Therefore the direction of spontaneous flow depends on sign of E_r , magnetic field symmetry and type of responsible turbulence

3 <u>Diffusive term of heat transport</u> is affected by E_r shear and E_r itself in stellarator (through the reduction of collisional flow damping of Zonal flow). It mainly depends on T_e rather than ∇T_e in LHD (because of the formation of ITB below the threshold)

The transport between different location are liked through meso-scale flow and causes non-local transport phenomena

4 Non-local transport is characterized as additional flux due to the gradient of different radii

Remarks

Good news

3N (non-linearity, non-diffusivity, non-locality) of transport give us interesting physics to be investigated (and gave me a chance for tutorial talk in this conference)

Bad news

Because of the recent significant progress of transport study in experiment and in theory, the X-day (all the transport physics will be understood and all the transport physicist will lose their job) is coming soon.

Comparison of radial structure of electron ITB between axisymmetric and non-axisymmetric devices

→ reduction of χ_e is extended to the plasma core (weak E_r hear) JT-60U (axisymmetric field)

 \rightarrow reduction of χ_e is localized in the narrow E_r shear region

Κ

K.Ida, Plasma Phys. Control. Fusion 46 (2004) A45

Role of mean ExB flow on turbulence transport

K.Itoh, Phys. Plasmas 14 (2007) 020702