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Gyrokinetic theory and simulation results are presented to investigate regulation of ion temperature gradient
(ITG) turbulence due to E × B zonal flows in helical systems. In order to examine effects of changes in helical
magnetic configuration on anomalous transport and zonal flows, magnetic field parameters representing the stan-
dard and inward-shifted configurations of the Large Helical Device (LHD) [O. Motojima, N. Ohyabu, A. Komori,
et al., Nucl. Fusion 43, 1674 (2003)] are used. The linear gyrokinetic analyses show that the largest growth rate of
the linear ITG instability for the inward-shifted configuration is higher than that in the standard one while, for the
former case, zonal flows generated by given sources decay more slowly because of lower radial drift velocities
of helical-ripple-trapped particles than for the latter as theoretically predicted. It is shown from the gyrokinetic
Vlasov simulation of the ITG turbulence that, in spite of the higher ITG-mode growth rate, the inward-shifted
plasma takes a smaller average value of the ion thermal diffusivity in the steady turbulent state with a higher
zonal-flow level. These results imply that neoclassical optimization contributes to reduction of the anomalous
transport by enhancing the zonal-flow level and give a physical explanation for the confinement improvement
observed in the LHD experiments with the inward plasma shift. When equilibrium radial electric fields produce
poloidal E × B rotation of helically-trapped particles with reduced radial displacements, further enhancement of
zonal flows and resultant transport reduction are theoretically expected.
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1 Introduction

In fusion science, numerous theoretical and experimen-
tal works have been done on zonal flows which are now
well known to play a critical role in regulation of turbu-
lent transport in plasmas [1, 2]. Therefore, in order to im-
prove plasma confinement in helical systems, where vari-
ous geometrical configurations are explored [3, 4, 5, 6, 7],
it is very important to elucidate effects of magnetic geom-
etry on both microinstabilities and zonal flows. This work
presents results from gyrokinetic theory and simulation to
investigate regulation of ion temperature gradient (ITG)
turbulence due to E × B zonal flows in helical systems.

It was shown in our previous papers [8, 9, 10, 11]
that, in helical systems, zonal flows can be maintained
for a longer time by reducing the radial drift velocities of
particles trapped in helical ripples. This implies a pos-
sibility that helical configurations optimized for reducing
the neoclassical transport can enhance zonal flows and ac-
cordingly lower the turbulent transport as well because the
neoclassical particle and heat fluxes are also decreased by
slowing down the radial drift of helical-ripple-trapped par-
ticles. In fact, it is observed in the Large Helical Device
(LHD) [12] that not only neoclassical but also anomalous
transport is reduced by the inward plasma shift [13] which
decreases the radial particle drift but increases the unfavor-
able magnetic curvature to destabilize pressure-gradient-
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driven instabilities such as ITG modes. This reduction of
anomalous transport by neoclassical optimization is a very
attractive property of helical systems to recent researches
on advanced concepts of helical devices [3, 4, 5, 6, 7]

It was shown by the ITG turbulence simulation in
our previous work [10, 11], in which model helical fields
for the standard and inward-shifted LHD configurations
were used in the gyrokinetic Vlasov (GKV) code [14], that
the turbulent ion thermal transport in the inward-shifted
model, which has larger growth rates of the ITG stability,
was considerably regulated by the zonal flows to a level
comparable to the standard case although the thermal dif-
fusivity χi for the inward-shifted case was slightly but still
larger than for the standard case. However, in the recent
GKV simulation with more accurate configuration models
installed [15], we find that further stronger zonal-flow gen-
eration occurs and makes χi smaller for the inward-shifted
configuration [16].

Recently, Mynick and Boozer [17] predicted by using
the action-angle formalism that the collisionless residual
zonal-flow level will be enhanced when the equilibrium
radial electric field causes helical-ripple-trapped particles
to follow closed poloidal orbits with small radial displace-
ments. Here, our gyrokinetic theory of zonal-flow response
is also extended to analytically derive detailed expressions
for the effects of the equilibrium electric field on zonal
flows in helical systems.
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2 Basic Equations

The nonlinear gyrokinetic equation for the perturbed ion
gyrocenter distribution function fik⊥ with the wave number
vector k⊥ perpendicular to the magnetic field B is written
as (

∂

∂t
+ v‖b · ∇ + iωDi

)
fk⊥

=
(−v‖b · ∇ − iωDi + iω∗Ti

) (
F0J0(k⊥ρ)

eφk⊥
Ti

)
+

c
B

∑
k′⊥+k′′⊥=k⊥

[b · (k′⊥ × k′′⊥)]J0(k′⊥ρ)φk′⊥ fik′′⊥ ,

(1)

where F0 is the local ion equilibrium distribution func-
tion that takes the Maxwellian form, J0(k⊥ρ) is the zeroth-
order Bessel function, ρ = v⊥/Ωi is the ion gyroradius,
and Ωi = eB/(mic) is the ion gyrofrequency. The two
frequencies ωDi and ω∗i are defined by ωDi = k⊥ · vDi

and by ω∗Ti = ω∗i[1 + ηi{miv2/2Ti − 3/2}] respectively,
where vDi ≡ (c/eB)b × (e∇Φ + µ∇B + miv2

‖b · ∇b)
is the ion gyrocenter drift velocity, ω∗i ≡ k⊥ · (b ×
∇r)(cTi/eB)(d ln n0/dr) is the ion diamagnetic frequency,
and ηi ≡ Ln/LTi is the ratio of the density gradient scale
length Ln ≡ −1/(d ln n0/dr) to the ion temperature gradi-
ent scale length LTi ≡ −1/(d ln Ti/dr). In Eq. (1), fik⊥ is
regarded as a function of the kinetic energy w ≡ 1

2 miv2, the
magnetic moment µ ≡ miv2

⊥/(2B), and the toroidal coor-
dinates (r, θ, ζ), where r, θ, and ζ denote the flux surface
label, the poloidal angle, and the toroidal angle, respec-
tively. A closed system of equations to determine the per-
turbed ion distribution function fik⊥ and the electrostatic
potential φk⊥ in the ITG turbulence are given by Eq. (1)
and the quasineutrality condition,∫

d3v J0 fik⊥−n0
eφk⊥

Ti
[1 − Γ0(b)] = n0

e
Te

(
φk⊥ − 〈φk⊥〉

)
,(2)

where 〈· · ·〉 represents the flux-surface average and Γ0(b) is
defined by Γ0(b) ≡ I0(b)e−b with the zeroth-order modified
Bessel function I0(b) and b ≡ k2

⊥Ti/(miΩ
2
i ).

The magnetic field is written as B = ∇ψ(r) × ∇(θ −
ζ/q(r)), where 2πψ(r) is equal to the toroidal flux within
the flux surface labeled r and q(r) represents the safety fac-
tor. In the present work, the radial coordinate r is defined
by ψ = B0r2/2. Following Shaing and Hokin [18], we here
consider helical systems with the magnetic field strength B
written by

B/B0 = 1 − ε00(r) − ε10(r) cos θ − εL0(r) cos(Lθ)

−
∑
|n|≤nmax

ε(n)
h (r) cos{(L + n)θ − Mζ}

= 1 − ε00(r) − εT (r, θ)

− εH(r, θ) cos{Lθ − Mζ + χH(θ)},
(3)

Table 1 Parameters at the flux surface r ' 0.6a in the standard
and inward-shifted configurations.

q r/R0 εt εh/εt ε−/εt ε+/εt

standard 1.9 0.099 0.087 0.91 -0.28 0
inward 1.7 0.114 0.082 1.20 -0.74 -0.24

s rε′00/εt rε′t /εt rε′h/εt rε′−/εt rε′+/εt

standard -0.85 0.22 1.02 1.96 -0.63 0
inward -0.96 0.71 1.00 2.44 -0.36 -0.61

where

εT (r, θ) = ε10(r) cos θ + εL0(r) cos(Lθ),

εH(r, θ) =
√

C2(r, θ) + D2(r, θ),

χH(r, θ) = arctan[D(r, θ)/C(r, θ)],

C(r, θ) =
∑
|n|≤nmax

ε(n)
h (r) cos(nθ),

D(r, θ) =
∑
|n|≤nmax

ε(n)
h (r) sin(nθ), (4)

and M (L) is the toroidal (main poloidal) period number of
the helical field. In the present work, we use L = 2 and
M = 10 to consider the LHD configurations. Here, we
assume that L/(qM) � 1. Multiple-helicity effects can be
included in the function εH(r, θ). Hereafter, we put εL0 = 0,
nmax = 1, and ε00 = 0 (but ε′00 ≡ dε00/dr , 0) in Eq. (3) at
the radial position r that we consider.

In order to model the standard and inward-shifted
LHD configurations, we use numerical values shown in Ta-
ble I for the safety factor q, the magnetic shear parameter ŝ,
the inverse aspect ration r/R0, the Fourier components of
the field strength (εt ≡ ε10, εh ≡ ε(0)

h , ε− ≡ ε(−1)
h , ε+ ≡ ε(+1)

h ),
and their radial derivatives. The two sets of parameters
in Table I for the standard and inward-shifted configura-
tions are called S-B an I-B, respectively, in [15]. These
parameters correspond to the flux surface at r ' 0.6a (a :
the plasma surface label) and they are taken from the vac-
uum magnetic field data, which describe the LHD config-
urations more accurately than the model field used in our
previous study [10, 11]. The use of vacuum field data is
justified because low beta plasmas are considered here.

3 Linear Analyses of ITG Modes
and Zonal Flows

In this section, the linearized version of Eq. (1) and the
quasineutrality condition given by Eq. (2) are numerically
solved by using the GKV code in order to obtain the linear
dispersion relation for the ITG instability and the zonal-
flow response to the initial perturbation in the standard and
inward-shifted configurations with the parameters shown
in Table I.
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3.1 Linear ITG instability
Figure 1 shows real frequencies and growth rates of the lin-
ear ITG instability as a function of the normalized poloidal
wave number kθρti where ρti ≡ vti/Ωi is the ion ther-
mal gyroradius. Here, ηi ≡ Ln/LTi = 3, Ln/R0 = 0.3,
Te/Ti = 1, α ≡ ζ − qθ = 0, and the parameters in Table
I are used. The real frequencies and growth rates for the
inward-shifted configuration take similar values to those
for the standard configuration. Compared with the results
in our previous work [10, 11], where simple model field
parameters are used, the difference in the growth rates be-
tween the standard and inward-shifted configurations are
reduced because of changes in values of q, ŝ and magnetic
curvature although the maximum growth rate for the latter
case is still larger than for the former case.

3.2 Zonal-flow response
Collisionless time dependence of the zonal-flow potential,
which has the wave number vector k⊥ = kr∇r perpendicu-
lar to the flux surface, is analytically derived as [9]

eφk⊥(t)
Ti

= K(t)
eφk⊥(0)

Ti
+

1
n0〈k2

⊥ρ
2
ti〉

∫ t

0
dt′ K(t − t′)

×
{

1 − 2
π

〈
(2εH)1/2 {

1 − gi1(t − t′, θ)
}〉}−1

×
〈∫

κ2<1
d3v e−ikrvdri(t−t′) Fi0S ik⊥(t′)

+

∫
κ2>1

d3v Fi0S ik⊥(t′)
{
1 + ikr

(
∆r − 〈∆r〉po

)}〉
,

(5)

where K(t) is defined by

K(t) = KGAM(t)[1 − KL(0)] +KL(t). (6)

Here, KGAM(t) and KL(t) are written as

KGAM(t) = cos(ωGt) exp(γt), (7)

and

KL(t) ≡ 1 − (2/π)〈(2εH)1/2{1 − gi1(t, θ)}〉
1 +G + E(t)/

(
n0〈k2

⊥ρ
2
ti〉

) , (8)

respectively. Detailed definitions of variables in Eqs. (5)–
(8) are found in [9]. In Eq. (7), the real frequency and
damping rate of the geodesic acoustic mode (GAM) [19]
are denoted by ωG and |γ| = −γ(> 0). Equation (6) rep-
resents that the GAM oscillations described by KGAM(t)
are superimposed around the averaged zonal-flow evolu-
tion expressed by KL(t). We note that K(0) = 1 and
limt→+∞KGAM(t) = 0. In Eq. (8), G represents the ratio of
the neoclassical polarization due to toroidally trapped ions
to the classical polarization while E(t) and {1−gi1(t, θ)} are
associated with the shielding caused by the radial drift of

non-adiabatic helically trapped particles. We have E = 0
and gi1 = 1 at t = 0 because helically trapped particles
give no shielding before they begin radial drift. On the
other hand, E approaches a finite value and gi1 ' 0 for
t � τc = 1/(krvdr) where τc represents the characteristic
time for the shielding due to helically-trapped particles to
occur. The response kernel KL(t) for the long-time behav-
ior of the zonal-flow potential takes the constant limiting
values,

K< ≡ lim
t/τc→+0

KL(t) =
1

1 +G
, (9)

and

K> ≡ lim
t/τc→+∞

KL(t)

= 〈k2
⊥ρ

2
ti〉

[
1 − (2/π)〈(2εH)1/2〉

]
×

{
〈k2
⊥ρ

2
ti〉[1 − (3/π)〈(2εH)1/2〉 +G]

+ (2/π)(1 + Ti/Te)〈(2εH)1/2〉
}−1

. (10)

In Eq. (10), the term proportional to Ti/Te is derived from
taking account of the radial drift of helical-ripple-trapped
electrons which cannot be described by the perturbed elec-
tron density model used in Eq. (2). Therefore, this term
should be neglected when using Eq. (10) for comparison
to numerical solutions of Eqs. (1) and (2).

Responses of the zonal-flow potential to the initial per-
turbation K(t) = 〈φk⊥(t)〉/〈φk⊥(0)〉 obtained by the linear
gyrokinetic simulation for the standard and inward-shifted
configurations are shown in Fig. 2, where the initial condi-
tion for the perturbed ion gyrocenter distribution function
is given by fik⊥(t = 0) = nk⊥(t = 0) exp(−miv2/2Ti) with
nk⊥(t = 0) determined from φk⊥(t = 0) through Eq. (2).
Figure 2 also shows KL(t) predicted by Eq. (8) for com-
parison to simulation results. We see that the change in
the zonal-flow response K(t) = 〈φk⊥(t)〉/〈φk⊥(0)〉 between
the standard and inward-shifted configurations are well de-
scribed byKL(t) except for the GAM oscillations. In order
to measure the change in the zonal-flow response, we de-
fine the zonal-flow decay time as

τZF ≡
∫ t f

0
〈φk⊥(t)〉/〈φk⊥(0)〉, (11)

where t f represents the time at which the zonal flow
reaches the final residual level and t f = 24R0/vti is used
in the present cases. Then, the simulation results give
τZF = 1.68 R0/vti for the inward-shifted case which is
about 65% larger than τZF = 1.02 R0/vti for the standard
case. The increase in τZF is attributed to the decrease in ra-
dial drift velocities of helical-ripple-trapped particles and
the resultant delay in their shielding of the zonal-flow po-
tential in the inward-shifted configuration. The improve-
ment of the zonal-flow response due to the inward plasma
shift was also found in our previous work [10, 11] us-
ing simpler configuration models although the degree of
the improvement is more evident in the present study (see
[15]).
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Fig. 1 Real frequencies and growth rates of the linear ITG in-
stability as a function of the normalized poloidal wave
number kθρti for the standard and inward-shifted config-
urations. Here, ηi ≡ Ln/LTi = 3, Ln/R0 = 0.3, Te/Ti = 1,
α = 0, and the parameters in Table I are used.

4 Nonlinear Simulation of ITG
Turbulence and Zonal Flows

This section presents nonlinear simulation results of the
ITG turbulence and zonal flows obtained by solving
Eqs. (1) and (2) with the GKV code (see also [16]). The
GKV code employs the toroidal flux tube domain and we
here use the same local plasma parameters (ηi ≡ Ln/LTi =

3, Ln/R0 = 0.3, Te/Ti = 1, and α = 0) as in the lin-
ear calculations in Sec. 3.1. Figure 3 shows the turbu-
lent ion thermal diffusivity χi as a function of time t ob-
tained by the GKV simulation with the magnetic field data
in Table I used for the standard and inward-shifted con-
figurations. We see that, as expected from the results in
Sec. 3.1, χi grows faster for the inward-shifted configu-
ration in the early time stage (t < 40Ln/vti) than for the
standard configuration and the peak value χi ' 3.8ρ2

tivti/Ln

for the former case is about 50% larger than the peak value
χi ' 2.6ρ2

tivti/Ln for the latter case. However, in later time
(t > 60Ln/vti), the turbulent transport reaches statistically
steady states and then the average ion thermal diffusivity
χi ' 1.45ρ2

tivti/Ln for the inward-shifted case is about 20%
smaller than the average value χi ' 1.78ρ2

tivti/Ln for the
standard case. This reversal of the χi-value order results
from a greater amount of zonal flows generated by turbu-
lence in the inward-shifted plasma as seen below.

The GKV simulation shows that radially-elongated
eddy structures (streamers) are first driven by the toroidal
ITG instability although they are destroyed into small ed-
dies by the self-generated E × B zonal flows in the later

Fig. 2 Time evolution of the zonal-flow potential for the stan-
dard and inward-shifted configurations. Here, krρti = 0.1
is used. Solid curves are obtained from the linear gyroki-
netic simulation. Dashed curves correspond to the long-
time zonal-flow response kernel KL(t) in Eq. (8) which
does not include the GAM oscillations.

steady turbulent state [16]. The time-averaged spectrum
of the zonal-flow potential φkx is plotted in Fig. 4. It
is found that the zonal-flow amplitude for krρti ' 0.25
in the inward-shifted configuration is about three times
larger than that in the standard configuration. The stronger
zonal-flow generation in the inward-shifted case is consis-
tent with the larger zonal-flow decay time as mentioned in
Sec. 3.2. A typical radial scale length of the zonal flows
observed in the helical ITG simulations is shown to be
shorter than those found in the tokamak ITG case for the
Cyclone DIII-D base case parameters. Accordingly, the
zonal-flow potential spectrum in the low kr-region has rel-
atively smaller amplitude than for the tokamak case. This
tendency is also expected from the kr-dependence of the
zonal-flow response expressed in Eqs. (8) and (10).

5 Effects of Equilibrium Radial
Electric Fields on Zonal Flows

So far, we have neglected effects of the equilibrium elec-
trostatic potentialΦ(r) which yields the radial electric field
E = Er∇r (Er = −dΦ/dr) and accordingly the E × B drift
velocity vE ≡ (c/B)Er∇r × b in the direction tangential to
the flux surface. Regarding the ITG modes, vE will just
give the Doppler shift k⊥ · vE to the real frequencies with-
out changing the growth rates. For the zonal-flow com-
ponents with k⊥ = kr∇r, at first, the equilibrium electric
field does not seem to influence the zonal-flow response
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Fig. 3 Time evolution of the ion thermal diffusivity χi obtained
by the ITG turbulence simulations for the standard and
inward-shifted configurations.

because k⊥ · vE = 0. However, when treating helical con-
figurations, we find subtle points about the above argument
with respect to the zonal-flow response. In the previous
sections, we have used the ballooning representation and
the local flux tube model, in which only the neighborhood
of a single field line labeled by α ≡ ζ − q(r)θ is consid-
ered. For helical systems, the field line label α explicitly
appears in the gyrokinetic equation in contrast to tokamak
cases although we have so far regarded α as a fixed pa-
rameter based on the above-mentioned local model. But,
even if the zonal-flow potential φ is independent of α, the
explicit appearance of α in the magnetic drift terms of the
gyrokinetic equation causes the perturbed gyrocenter dis-
tribution function δ f to depend on α. Therefore, in helical
configurations, we generally have vE · ∇δ f , 0 so that the
zonal-flow response can be affected by the existence of the
equilibrium electric field.

Compared with passing and toroidally trapped parti-
cles, helical-ripple-trapped particles will have their orbits
changed more greatly by the equilibrium radial electric
field Er. The radial displacements of helical-ripple-trapped
particles are significantly reduced when the E × B drift
due to Er generates their rapid poloidal rotations as shown
in Fig. 5. For such cases, neoclassical ripple transport is
reduced and, in addition, higher zonal-flow responses are
expected because the shielding of the zonal-flow potential
by the helically-trapped particles is weakened. This sce-
nario was first presented by Mynick and Boozer [17], who
employed the action-angle formalism and pointed out the
analogy between the mechanisms of zonal-flow shielding
and neoclassical transport.

Taking account of the dependence of the perturbed
distribution function on the field line label α, our formu-
lation of zonal-flow response is extended to derive detailed
expressions for the Er effects on the zonal-flow response.

Fig. 4 Time-averaged radial-wave-number spectrum of the
zonal-flow potential obtained by the ITG turbulence sim-
ulations for the standard and inward-shifted configura-
tions. The time average is taken over 60 ≤ vtit/Ln ≤ 250.

We now assume the bounce centers of helically-trapped
particles to draw poloidally-closed orbits with the poloidal
angular velocity ωθ ≡ −cEr/(rB0). Furthermore, consider-
ing the helical configuration with the single-helicity com-
ponent, for which εH = εh is independent of θ, we find that,
for t � 1/ωθ, the shielding term E due to the helically-
trapped particles in Eq. (8) is replaced with EEr defined by

EEr =
15
8π

(2εh)1/2(krρti)2
(
εtvti

rωθ

)2 (
1 +

Te

Ti

)
(12)

Using Eq. (12), the collisionless long-time limit of the
zonal-flow response kernel, which represents the residual
zonal flow level, is now given not by Eq. (10) but by

KEr =
1

1 +G + EEr/(krρti)2

=

1 +G +
15
8π

(2εh)1/2
(
εtvti

rωθ

)2 (
1 +

Te

Ti

)−1

(13)

We see that, as Er increases,KEr increases and approaches
the same value 1/(1 + G) as in Eq. (9) because EEr is in-
versely proportional to the square of Er. It is noted that
EEr/k2

r given from Eq. (12) corresponds to the product of
the helically-trapped-particles’ fraction (∼ ε1/2

h ) and the
square of the radial orbit width ∆E(∝ 1/ωθ ∝ 1/Er) of
helically-trapped-particles’ poloidal rotation (see Fig. 5),
which agrees with Mynick and Boozer [17]. In helical con-
figurations such as the inward-shifted LHD case, which are
optimized for reduction of neoclassical transport, the en-
hancement of zonal-flow response due to Er is expected
to work more effectively than in others because the neo-
classical optimization reduces radial displacements ∆E of
helically-trapped particles during their poloidal E × B ro-
tation.
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Fig. 5 Orbit of bounce-center motion of helical-ripple-trapped
particles modified by the radial electric field Er. Here,
∆E represents the radial displacement of the orbit.

6 Conclusions

In the present work, effects of changes in helical magnetic
configuration on anomalous transport and zonal flows are
investigated based on gyrokinetic theory and simulation of
ITG turbulence and zonal flows. In order to represent a
specific flux surface (r ' 0.6a) in the standard and inward-
shifted LHD configurations, magnetic parameters such as
the Fourier components of the field strength, their radial
derivatives, the safety factor, and the magnetic shear are
used, which describe the configurations more accurately
than our previous model parameters. We find from the lin-
ear analyses that the largest growth rate of the linear ITG
instability for the inward-shifted configuration is slightly
higher than that in the standard one while, for the former
case, the zonal-flow response is more favorable to gener-
ation of low-frequency zonal flows because of lower ra-
dial drift velocities of helical-ripple-trapped particles than
for the latter as theoretically predicted. The nonlinear
gyrokinetic simulation shows that the turbulent ion ther-
mal diffusivity χi for the inward-shifted plasma takes a
higher peak value in the early time stage but a lower av-
erage value in the later steady turbulent state with stronger
zonal-flow generation. Thus, it is confirmed that neoclas-
sical optimization contributes to reduction of the anoma-
lous transport by enhancing the zonal-flow level. This
presents a physical mechanism to explain the confinement
improvement observed in the LHD experiments with the
inward plasma shift. Also, further enhancement of zonal
flows and resultant transport reduction are theoretically ex-
pected when the equilibrium radial electric field Er causes
poloidal E × B rotation of helically-trapped particles with
reduced radial displacements. Simulation studies on the Er

effects require global treatment in the direction parallel to
the E × B drift velocity and remain as a future task.
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