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Zonal flows in 3D toroidal systems

H. E. MYNICK1), and A. H. BOOZER2)

1)Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA
2)Dept. of Applied Physics &Mathematics, Columbia University, New York City, NY, USA

(Received 12 October, 2007)

A range of techniques for mitigating stellarator neoclassical (nc) transport has been developed, and attention
is now turning to also reducing the turbulent transport fluxes. As for tokamaks, zonal flows (ZFs) will be an
important tool in achieving this, and understanding the effect of machine geometry on these is important. This
paper discusses a theory of the shielding and time evolution of zonal flows in stellarators and tokamaks, which
attains greater generality and conciseness by use of the action-angle formalism. The theory supports the earlier
perspective that neoclassically-optimized devices should have less ZF damping, but it is pointed out that the
further view, that this implies that optimized devices should therefore also have less turbulent transport, is overly
simplistic, neglecting the additional configuration dependence of the nonlinear source which drives the ZFs.
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Since the 1980s, a range of techniques for mitigating
stellarator neoclassical (nc) transport has been developed,
and attention is now turning to also reducing the turbulent
transport fluxes. As for tokamaks, an important tool for
achieving this will be producing strong zonal flows (ZFs),
which can act to suppress the turbulence producing the
transport. It is thus of interest to understand how machine
geometry will affect the strength of these flows, and their
effectiveness in suppressing turbulent transport. This pa-
per describes an analytic study of the shielding and time
evolution of ZFs in stellarators and tokamaks,[1] discusses
some of its implications, and its context in recent work on
ZFs.

ZFs are primarily poloidal E × B flows due to a
radially-varying electrostatic potential φz(r, t) driven by the
nonlinearity in the kinetic equation. For present purposes,
this is the Vlasov equation,

(∂t + Ĥ0)δ f (z, t) = −ĥ f0 − ĥδ f , (1)

with nonlinearity −ĥδ f ≡ −{δ f , h}. Here, b̂a ≡ {a, b} is
the Poisson bracket of a(z) with b(z) in the 6-dimensional
phase space z, and the Hamiltonian H(z, t) = H0 + h and
distribution function f (z, t) = f0 + δ f are divided into their
unperturbed (subscript 0) and perturbed portions, with f0

satisfying Ĥ0 f0 = 0. Here we consider electrostatic pertur-
bations only, h(z, t) = eδφ(r, t), where r(z) is the particle
position. The dynamics of ZFs are determined by a self-
consistent loop between φz and the potential fluctuations
φk of the turbulence. Via the nonlinearity in Eq.(1), the φk

produce a source S ∼ |φk|2 for φz, which in turn affects
the growth and amplitudes of the φk.[2, 3, 4] The theory
developed in Ref. [1] follows earlier work[5, 6, 7, 8] in
primarily addressing the former of these 2 legs of the loop,
taking the nonlinearity −ĥδ f as a known source S f0 and
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computing the resultant φz as a linear response problem,
k2φz = 4πδρxt/D, where δρxt is the external charge-density
perturbation driven by S , δρxt ∼

∫

dtS (t), andD is the di-
electric function. Regarding the latter leg, the effect of ma-
chine geometry on S is relatively unexplored to date, but is
an important issue in understanding the overall dynamics.
This is discussed further later in this paper.

In Ref. [1] the action-angle (aa) formalism[9] was
used to solve the kinetic equation without expansion of
that equation in small parameters of radial excursions
and timescale, resulting in more general expressions for
the dielectric shielding, and extending results from earlier
work.[5, 6, 7, 8, 10] From these expressions, it was found
that for each mechanism of collisional transport, there is
a corresponding shielding mechanism, of closely related
form and scaling. Assuming the amplitude of the non-
linear source is unchanged, this correspondence supports
the suggestion raised in earlier work[11, 6, 12, 10] that
neoclassically-optimized stellarators will also have larger
ZFs, and consequently lower turbulent transport. On a
longer, diffusive timescale, ZF evolution was shown to be
governed by a Langevin-like equation, with radial electric
field Er(t) moving diffusively about roots Ea of the am-
bipolarity equation. The resultant probability distribution
function is bounded, a balance between the turbulent fluc-
tuations inducing diffusion and the neoclassical fluxes pro-
viding a restoring force toward Er = Ea. A fuller expo-
sition of the analytic theory is given in Ref. [1]. Here we
recap the elements of that theory, and discuss some of its
implications and related issues yet to be addressed.

Action-Angle formalism
In the aa formalism one parametrizes phase points z

with the 3 invariant actions J of the unperturbed motion
and their 3 conjugate angles θ, instead of the more directly
physical particle position r and momentum p. The unper-



Proceedings of ITC/ISHW2007

turbed Hamiltonian is then independent of θ, H0 = H0(J).
The key feature of aa variables is that they make the de-
scription of particle motion very simple. Hamilton’s equa-
tions are:

θ̇ = ∂JH = Ω(J) + ∂Jh ' Ω(J), (2)

J̇ = −∂θh = −i
∑

l

lhl(J, t) exp(il · θ), (3)

where ∂J (∂θ) denotes a gradient in J (θ)-space, Ω(J) ≡
∂JH0, and l is the 3-component vector index, specifying
the harmonic of each component of θ in the Fourier de-
composition h(z) =

∑

l hl(J) exp(il · θ).
Following Refs. [5, 6, 7] in replacing the nonlinear

term −{δ f , h} with a specified source S (z, t) f0, and Laplace
transforming in time and Fourier transforming in θ, one
readily obtains a solution for δ f , nonperturbative in the ex-
cursions made in a particle orbit,

δ fl(J, ω) = G0[il · ∂J f0hl(J, ω) +

δ fl(J, t = 0) + S l(J, ω) f0], (4)

with propagator G0 ≡ (−iω + il · Ω + ν f )−1, in which we
include an effective damping rate ν f , to later consider the
effect of collisions. Inserting Eq.(4) into the expression for
the charge density, (now showing species label s) δρs(x) =
∫

dzρ(x|z)δ fs(z), where ρ(x|z) ≡ esδ(x− r(z)) is the charge
density kernel and es is the species charge, one obtains 3
contributions, labelled A, B, and C, corresponding to the 3
terms on the right side of (4):

δρsA(x, ω) =

∫

dx′Ks(x, x′, ω)δφ(x′, ω) (5)

δρs,B+C(x, ω) = (2π)3
∫

dJ
∑

l

ρ∗l (x|J)G0 ×

[δ fsl(J, t = 0) + S sl(J, ω) fs0],(6)

with response kernel[9]

Ks(x, x′, ω) = Kad
s (x, x′) + (2π)3

∫

dJ
∑

l

×

ρ∗l (x|J)
ω∂H0 fs0 + l · ∂J)H0 fs0

l ·Ω − ω − iν f
ρl(x′|J). (7)

δρsA, proportional to h or δφ, gives the self-consistent
response of the plasma, with response kernel Ks. δρsB, due
to the initial conditions of δ f , gives the transient ballistic
response, and the third term, δρsC, is due to the nonlin-
ear drive. Kad

s (x, x′) ≡ esδ(x − x′)
∫

dzρ(x|z)∂H0 fs0 is the
(generalized) adiabatic term, reducing to the usual adia-
batic term when f0 is specialized to the local Maxwellian
form

fM(J) ≡ n0

(2πMT )3/2
exp[−(H0 − eΦa)/T ), (8)

where density n0, ambipolar radial potential Φa, and
temperature T are functions of the drift-averaged minor
radius rd(J), and M is the particle mass.

Specialization to Toroidal Geometry
The expressions given thus far are valid for any sys-

tem where a complete set J of constants of the motion ex-
ists. We now specialize to toroidal geometries, including
tokamaks and stellarators. We represent position in terms
of flux coordinates r = (ψ, θ, ζ), where 2πψ is the toroidal
flux within a flux surface, and θ and ζ are the poloidal and
toroidal azimuths. In terms of these, the magnetic field
may be written B = ∇ψ×∇θ+∇ζ ×∇ψp = ∇ψ×∇αp, with
2πψp the poloidal flux, Clebsch angle αp ≡ θ− ιζ, constant
along a field line, and ι ≡ q−1 ≡ dψp/dψ the rotational
transform. αp and momentum (e/c)ψ form a canonically
conjugate pair for motion perpendicular to the field line.
It is also useful to define an average minor radius r(ψ) by
ψ ≡ B̄0r2/2, with B̄0 ≡ B̄(r = 0) the average magnetic
field strength on axis. We consider toroidal systems with
the nonaxisymmetric portion of magnetic field strength B
dominated by a single helical phase η0 ≡ n0ζ − m0θ,

B(x) = B̄(r)[1 − εt(r) cos θ − δh(x) cosη0], (9)

but with ripple strength δh(x) allowed to vary slowly over
a flux surface, with flux-surface average εh(r) ≡ 〈δh〉.

In such configurations, collisionless particle motion
occurs on 3 disparate timescales, the gyro, transit/bounce,
and perpendicular drift scales, denoted by subscripts g, b,
and d. The characteristic gyro, bounce, and drift frequen-
cies satisfy Ωg � Ωb � Ωd, and the corresponding ra-
dial excursions particles make on those scales are the gy-
roradius ρg = v⊥/Ωg, the radial bounce excursion/banana
width ρb ' vBt/Ωb, and the “superbanana width” excursion
ρd ' σhvBt/Ωd. Here, vBt = εtµB̄/(MΩgr) is the grad-B
drift amplitude, µ is the magnetic moment, and σh equals
1 for a ripple-trapped particle (in trapping state τ = h), and
0 otherwise. Thus, passing or toroidally-trapped particles
(τ = p and t, resp.) have ρd = 0.

The aa variables can be chosen so that motion on each
timescale can be described by one of the 3 pairs (θi, Ji). A
suitable choice is θ = (θg, θb, ᾱp), J = (Jg, Jb, (e/c)ψ̄), with
Jg ≡ (Mc/e)µ the gyroaction, θg the gyrophase, describing
the fastest time scale of the motion, Jb the bounce action,
θb its conjugate bounce phase, ψ̄ the drift-orbit averaged
value of ψ, and its conjugate phase ᾱp, the orbit-averaged
Clebsch coordinateαp, describing the slow, drift timescale.
To make the periodicity of the drift angle 2π as for the other
2 phases, instead of ( ᾱp, (e/c)ψ̄) we use the closely related
canonical pair (θd, Jd = (e/c)ψ̄d), with θd ≡ ᾱp/(1− ιqmn0),
ψ̄d ≡ ψ̄ − ψ̄pqmn0, where qmn0 ≡ m0/n0. For typical pa-
rameters, ιqmn0 � 1, so that (θd ' ᾱp, ψ̄d ' ψ̄). Corre-
spondingly one has the characteristic frequencies of mo-
tionΩ ≡ (Ωg,Ωb,Ωd), and vector index l ≡ (lg, lb, ld).

We adopt an eikonal form for the structure of any
mode a,

φa(x) = φ̄a(r) exp iηa(x), (10)

with wave phase ηa(x) ≡ [
∫ r

dr′ kr(r′) + mθ + nζ], and
slowly-varying envelope φ̄a(r). Then using Eqs. (5,6,7),
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and (10) in the Poisson equation, one obtains the radially-
local response equation[1]:

k2D(k, ω)
eiφ̄a(r)

Ti
=
∑

s

λ−2
si

∑

l

〈G∗la(J)×

i[δ fsl(t = 0)/ fs0 + S sl(ω)]
(ω − l ·Ω + iν f s)

〉 (11)

Here, λ2
si ≡ Ti/(4πns0esei), k2 ≡ |k|2, 〈. . .〉 ≡

(2π)−2
∮

dθdζ
∫

dp( f0/n0) . . . is the flux surface and
momentum-space average over the unperturbed distri-
bution function f0, Gla(J) ≡ (2π)−3

∮

dθ exp(−il ·
θ) exp iδηa(z) the “orbit-averaging factor”, a concise ex-
pression for the interaction of mode a with particles with
actions J, and δηa the portion of ηa oscillatory in θ (so
having zero θ–average). Dielectric functionD is given by
D(k, ω) ≡ 1 +

∑

s χs(k, ω), with susceptibility χs(k, ω) =
(kλs)−2gs(k, ω)), and shielding function

gs(k, ω) = 1 −
∑

l

〈|Gla(J)|2 ω − ω f
∗s

ω − l ·Ω + iν f s
〉. (12)

Here, ω f
∗ ≡ ω∗[1 + η(u2 − 3)/2], with ω∗ ≡ −kαcT/(eBLn)

the diamagnetic drift frequency, η ≡ d ln T/d ln n, u ≡ v/vs

the particle velocity, normalized to the thermal speed vs,
kα ≡ ld/r, and L−1

n ≡ −∂ ln n0/∂r. The 1 in gs comes from
the adiabatic term Kad

s in Eq.(7). The 2 terms on the right
side of Eq.(11) arise from δρs,B+C. This response equation
is of the same form as that obtained in Refs. [5, 6], or of
any linear response calculation. The differences lie in the
form of the dielectric D, and in the use of the aa form,
which facilitates dealing with the range of timescales and
of orbit-averaging effects in complex geometries in a gen-
eral manner.

To evaluate the Gl, we describe the radial motion by
r ' rd + δr(d)(θd) + δr(b)(θb) + δr(g)(θg), where for each
i = g, b, d, we make a harmonic approximation of the mo-
tion in that phase, δr(i)(θi) ' ρi cos θi. This is a very good
approximation for gyromotion, and a good approximation
for bounce motion not too near a trapping-state boundary.
For simplicity, we assume that superbanana (τ = h) par-
ticles do not detrap, but precess poloidally dominated by
E × B poloidal drift, Ωd ' ΩdE, which is roughly con-
stant on a given orbit, while drifting radially as vBt sin θ,
as usual. This yields radial motion of the given harmonic
form, with superbanana width ρd = σhvBt/ΩdE, as noted
above. For completeness, one may also include in this
description the finite banana widths ρbh of τ = h parti-
cles, which give rise to the helically–symmetric nc trans-
port branch in straight stellarators[13], and a second type
of superbanana width, the finite radial excursions ρdt made
by τ = t particles on the drift timescale, which give rise to
the “banana-drift” transport branch.[14, 15, 16] One then
finds

Gla(J) = Jlg (zg)Jlb (zb)Jld (zd)e−iξa , (13)

with zg,b,d = krρg,b,d, and ξa a phase factor, whose value is
irrelevant, since Gl enters only as |Gl|2.

For drift turbulence, which is driving the ZFs, one typ-
ically has kd

⊥ρgi ∼ 0.3, and frequencies ωk ∼ ω∗(kd
⊥). For

ZFs, one has much smaller kr and frequencies ωZ , down
by an order of magnitude, perhaps by the “mesoscale” ra-
tio, kZ

r /k
d
⊥ ∼

√

ρgi/a. Thus, for both species, one has the
orderingωZ ,Ωd � Ωb � Ωg, and zg < zb < 1. For the mo-
ment we leave the relative sizes of ωZ and Ωd unspecified.
Also, one may have zd & 1 for trapped particles, for ions
and also, notably, for electrons, as noted by [6]. Thus, as
opposed to tokamaks, in stellarators electrons can partici-
pate in orbit averaging, because their radial excursions on
the drift timescale can be comparable with those of ions.

Because ωZ � Ωb,g, the sum over l in Eq.(12) is
dominated by the terms with lg,b = 0, an approximation
strengthened for zg,b � 1, for which the factors J2

lg,b
in |Gl|2

in Eq.(12) are negligible unless lg,b = 0. These reduce the
triple sum there to a single sum

∑

ld . In that sum, if one
has ω � Ωd, then over the ld–range ∆ld ∼ zd over which
J2

ld
in Eq.(12) is appreciable the integrand does not change

greatly, so that one can perform the summation, using the
identity

∑

l J2
l = 1, which eliminates the J2

ld
factor, leaving

only the factor J2
lg

J2
lb

. In the other limit ω � Ωd, the sum

is dominated by the ld = 0 term, and the effect of J2
ld

sur-
vives. Thus, for ω � Ωd, all of gyro-, bounce- and drift-
averaging contribute. Neglecting ν f s, Eq.(12) becomes

gs(k, ω) ' 1 − Λ0b(bg, bb), (Ωd � ω), (14)

gs(k, ω) ' 1 − Λ0d(bg, bb, bd), (ω � Ωd),

where Λ0d(bg, bb, bd) ≡ 〈J2
g J2

b J2
d〉, Λ0b(bg, bb) ≡

Λ0d(bg, bb, bd = 0) ≡ 〈J2
g J2

b〉, J2
g,b,d ≡ J2

0(zg,b,d), bg ≡ k2
rρ

2
gT ,

bb = bgq2/(Ftε
1/2
t ), and bd ≡ k2

rρ
2
dT , with ρgT ≡ vT/Ωg, vT

the species thermal velocity, ρdT ≡ ρd(v = vT ) ∝ v2
T , and

Ft the fraction of toroidally-trapped particles.
The physics represented by Eqs.(14) is that if the the

ZF drive in a stellarator has a time variation slow com-
pared with Ωd [cf. Eq.(14b)], τ = h particles have time to
partially shield out φz by drifting along their collisionless
superbanana orbits, an averaging mechanism not available
to tokamaks. If the ZF drive varies rapidly compared with
Ωd [Eq.(14a)], this new mechanism for radial averaging is
lost.

The functions Λ0b and Λ0d succinctly describe the
additional contributions from finite bb, corresponding to
shielding due to the “bounce” contribution gb to the shield-
ing function computed in Refs. [5] and [6], and from fi-
nite bd, corresponding to a “drift” contribution gd to g, ex-
tending the result in Ref. [6]. Table 1 synopsizes some
of the limiting cases covered by earlier work, extended in
Ref. [1], of which Eqs.(14) here are Eqs.(15) in [1] noted
in the table. One notes that most of the entries are for colli-
sionless theory, ν f = 0. In the tokamak limit (εh, bd → 0),
Λ0d(bg, bb, bd)→ Λ0b(bg, bb), so that Eq.(14a) again holds.
In the further cylindrical limit (εt → 0), bb vanishes, and
the Λ’s in Eqs.(14) reduce to the more familiar Λ0(bg) ≡
Λ0b(bg, bb = 0) ≡ 〈J2

g〉 = I0(bg)e−bg , with I0(b) the modi-
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Parameter range Ref.

ν f = 0:
tokamak limit (εh, bd = 0), ω < Ωb :

bb < 1 [5]
bb arbitrary [17]

stellarators (εh, bd > 0) :
bd → ∞, ω < Ωd [6, 7]
bd < 1, ω < Ωd [1](16b)
bd < 1, Ωd < ω [1](16a)
bd arbitrary, ω < Ωd [1](15b)
bd arbitrary,Ωd < ω [1](15a)

ν f > 0:
νh/Ωd > 1 [8]
νh/Ωd arbitrary [1]

Table 1 Cases covered by the present theory

fied Bessel function of the first kind. For bg < 1, one has
Λ0(bg) ' 1 − bg, and thus g ' bg, the gyro- contribution
gg to g, corresponding to the classical (gyro) polarization
current Jp,g.

Using the small-argument expansion J0(z) ' 1−(z/2)2

for zd as well as zg,b in Λ0d, Eqs.(14) reduce to [1]

gs(k, ω) ' bg + Ftcbbb, (Ωd � ω), (15)

gs(k, ω) ' bg + Ftcbbb + Fhcdbd, (ω � Ωd),

where Fh = (2/π)
√

2εh is the fraction of particles with
τ = h, cd ' (15/2), and for a tokamak, one finds cb '
10
√

2/(3π) ' 1.5, in approximate agreement with the
value in Ref. [5].

One notes that the drift contribution gd = Fhcdbd '
Fh(krρd)2 in Eq.(15b) has a form analogous to the bounce
and gyro contributions, differing from the scaling gd ' Fh

found in Refs. [6, 7]. This is because in Refs. [6, 7],
the term Ωd∂θdδ f was neglected in their kinetic equation,
thereby implicitly taking the limit bd → ∞ (see Table 1),
also of physical interest. Taking that limit in Eq.(14b) also
recovers that scaling.

As discussed in Ref. [1] and illustrated by Eqs.(15),
there is a correspondence between the contributions g j to
the shielding function and the radial collisional (classi-
cal+nc) transport coefficients D j: the gyromotion produc-
ing the classical polarization term gg also gives rise to clas-
sical transport, the bounce motion producing gb gives rise
to axisymmetric nc transport, and the drift motion yielding
gd also produces the “superbanana” branch of transport,
dominant in conventional stellarators. For each mecha-
nism j, one may use the heuristic form D j ' F jν f j(∆r j)2,
with F j the fraction of particles participating in that mech-
anism, ∆r j the radial step in the random walk process, and
ν f j the effective stepping frequency in that random walk.
For example, for the 1/ν superbanana regime, one has
F j → Fh ' ε

1/2
h , ∆r j → vBt/νh, and ν f j → νh ' ν/εh.

And for the shielding contributions g j, one has the ap-
proximate form g j ' F j(kr∆r j)2, exemplified by Eqs.(15).

Hence, g j′/g j ' (D j′/D j)(ν f j/ν f j′). Thus, for j → g and
j′ → b, one expects the gyro- contribution gg in Eqs.(15) to
be smaller than the bounce contribution gb, because clas-
sical diffusion Dg is subdominant to banana diffusion Db.
Similarly, for j → b, j′ → d, one expects the bounce
contribution gb to dominate gd in Eq.(15b) as long as su-
perbanana transport Dd is subdominant to Db. For NCSX,
for example, evaluations have shown[18] that, at a self-
consistent radial ambipolar field Ea, NCSX should have
Dd down from Db by about an order of magnitude. Cor-
respondingly, one expects that the ripple contribution gd to
ZF damping should be small compared with the tokamak
contribution gb.

It has been argued[11, 6, 12, 10] that neoclassically-
optimized stellarators should also have lower turbulent
transport, due to less damping of ZFs. The basic idea of
most nc optimization techniques has been to reduce rip-
ple transport (Dd) by reducing either Fh, or by reducing
superbanana width ρd ' vBt/Ωd.[19] One notes from the
resemblance of Dd to gd, characterized by the argument
1
2 〈z

2
d〉 ' Fhk2

rρ
2
dT , that the present theory supports this ar-

gument.
However, as noted in the introduction, the shielding

of ZFs from a given source, which most analytic ZF
studies to date (including the present one) address, is
only 1 of the 2 legs of the feedback loop in ZF dynamics.
That work demonstrates that neoclassically-optimized
stellarators will also tend to have lower damping of
ZFs. However, in general, different configurations will
have differing levels of drive for instabilities, and thus
differing strengths of the ZF source S . Thus, recent
gyrokinetic simulations[10] comparing configurations
modeling LHD in its (A)standard and (B)inward-shifted
operation, reported that the ZFs increased (by about
50%) in going from A to B, as might be expected from
the better nc-optimization of case B. However, because
case B also has much stronger (about 60%) ITG growth
rates, the turbulent flux in that case is increased (by
about 16%) over that in case A, in contrast with the
experimentally–observed reduction[11] in turbulent trans-
port. Very recent further simulations[20] of this same
comparison, but with more realistic equilibrium profiles,
have brought the numerical transport trends more into
accord with experimental observations. Thus, it appears
that the now commonly-cited correlation between nc and
turbulent optimization is too simple, and a more refined
understanding of this relationship must come from also
accounting for the effects of machine geometry on the
source strength.

Longer-time ZF evolution
As discussed in Ref. [1], the effects on ZFs from the

g j (describing dielectric shielding) and the D j (describing
radial collisional fluxes) come together in the time evolu-
tion equation for the flux-surface averaged radial electric
field Er ≡ 〈∇r · E〉, obtained from the surface average of
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Ampere’s law, plus an expression for the surface-averaged
radial current Jr,

∂tEr = −4πJr, (16)

Jr = (4π)−1χ∂tEr + σ(Er − Ea) + FS /B.

The first term in Jr, proportional to the time derivative of
Er, represents the polarization current J p, with χ contain-
ing the dielectric shielding contributions. The second term
represents the nonambipolar radial current due to nc trans-
port, from a first-order expansion in E ≡ (Er − Ea) =
−〈∇r · ∇φz〉 of the nc radial current

∑

esΓs(Er), where
Ea = −〈∇r · ∇Φa〉 is the ambipolar value at which the
ion and electron particle fluxes are equal. FS is the force,
coming from the source S in Eq.(1), exerted by the tur-
bulence within a magnetic surface normal to the magnetic
field, which acts as a source driving Er. Using Eq.(16b)
in (16a) yields a Langevin-like equation, which in the ω
domain may be written

−iωE(ω) + γE E(ω) = cS (ω), (17)

where γE(ω) ≡ 4πσ/D(ω), cS (ω) ≡ −4πFS /BD(ω), and
D(ω) ≡ 1 + χ(ω) as before. γE , absent in a tokamak,
provides the restoring force toward the point Er = Ea

of ambipolarity. If D(ω) is ω-independent, then γE is as
well, and in the time domain Eq.(17) reduces to a standard
Langevin equation for E,

∂tE(t) + γE E(t) = cS (t). (18)

The source cS that drives the ZFs is approximated as ran-
dom. Thus, ensemble averaging (18), one has

∂t〈E〉p = −γE〈E〉p, (19)

where 〈...〉p ≡
∫

dE...p(E, t) is the ensemble average with
probability distribution function (pdf) p(E, t). It satisfies

∂t p = ∂E(DE∂E p + γE Ep), (20)

with DE ≡
∫ ∞

0
dτ〈cS (t)cS (t − τ)〉p the diffusion coefficient

in E-space. From this follows Eq.(19), and

∂t
1
2
〈E2〉p = DE − γE〈E2〉p. (21)

One notes from this the balance between diffusion
and the restoration toward Er = Ea. In steady-state,
Eqs.(20) and (21) yield p(E) = p0 exp(−γEE2/2DE), and
〈E2〉p = DE/γE. Since γE ∼ D−1 and DE ∼ D−2, one
has 〈E2〉p ∼ D−1. Thus, assuming the turbulent forces
FS driving the ZFs are unaffected, the larger D implied
at low-ω by the drift-polarization shielding would reduce
γE , but reduce the diffusion DE even more, resulting in a
smaller ZF amplitude 〈E2〉1/2p .

Discussion
In the tokamak limit σ, γE → 0, Eq.(18) or (21)

predicts an unbounded diffusion. Then other restoring
mechanisms, such as those given in the model Eq.(19) of

Ref. [5], become important, and would provide an analo-
gous bounded statistical evolution of Er, though for that
model equation the time-average value of Er would shift
from the stellarator value Ea to 0. The more robust
ambipolar field Ea in a stellarator provides a turbulence-
suppression mechanism additional to, enhancing or dimin-
ishing that of, the ZFs themselves. For example, inter-
nal transport barriers induced by jumps in Ea(r) from the
ion to the electron root[21, 22, 23] (which enhances the
shear in Er and resultant flow-shear) have been observed
on W7AS[24], LHD[25], and on CHS[26]. Better under-
standing how the ambipolar and ZF-induced flow shear act
together presents an additional issue, and potential oppor-
tunity, for stellarators.

The theory from Ref. [1], as for earlier work[5,
6, 7, 8] which it extends, treats one leg of the self-
consistent ZF loop, the time evolution of zonal flows,
given a specified turbulent source S . The relationship be-
tween the transport coefficients D j and shielding function
contributions g j established by that theory indicates that
neoclassically-optimized stellarators should have less ZF
damping, and thus supports the earlier view[11, 6, 12, 10]
that neoclassically-optimized stellarators should also have
lower turbulent transport. However, as noted here, the as-
sumption that S remains fixed from one configuration to
another is unwarranted, and further study of the depen-
dence of S on configuration is clearly indicated. In fact, the
recent results[10, 20] from LHD simulations indicate that
this widely-held view is too simplistic, and that a fuller
perspective will include additional variables beyond only
the degree of a configuration’s neoclassical optimization.

Understanding the configuration-dependence of S is
of course complicated, possibly the reason most analytic
work has focussed mainly on the first leg of the ZF loop.
Theoretical progress here can be aided greatly by analysis
of further numerical simulations designed to elucidate this
relationship.

[1] H.E. Mynick, A.H. Boozer, Phys. Plasmas 14 072507
(2007).

[2] P.H. Diamond, Y.-B. Kim, Phys.Fluids-B 3, 1626 (1991).
[3] H. Biglari, P.H. Diamond, P.W. Terry, Phys.Fluids-B 2, 1

(1990).
[4] L. Chen, Z. Lin, R.B. White, Phys. Plasmas 7, 3129 (2000).
[5] M.N. Rosenbluth, F.L. Hinton, Phys. Rev. Letters 80, 724

(1998).
[6] H. Sugama, T.H. Watanabe, Phys. Rev. Letters 94, 115001

(2005).
[7] H. Sugama, T.H. Watanabe, Phys. Plasmas 13, 012501

(2006).
[8] K.C. Shaing, Phys. Plasmas 13, 052505 (2006).
[9] A.N. Kaufman, Phys. Fluids 15, 1063 (1972).
[10] T.-H. Watanabe, H. Sugama, S. Ferrando-Margalet, Nucl.

Fusion 47, 1383 (2007).
[11] H. Yamada, J.H. Harris, A.Dinklage, E. Ascasibar, F.Sano,

S.Okamura, U.Stroth, A.Kus, J.Talmadge, S.Murakami,
M.Yokoyama, C.Beidler, V.Tribaldos, K.Y.Watanabe, Proc.
31st EPS Conference on Plasma Physics, London, June



Proceedings of ITC/ISHW2007

29-July 2, 2004 (European Physical Society, Pepip-Lancy,
2004), P5-9.

[12] K.C. Shaing, Physics of Plasmas 12, 082508 (2005).
[13] A. Pytte, A.H. Boozer, Phys. Fluids 24, 88 (1981).
[14] A.H. Boozer, Phys. Fluids 23, 2283 (1980).
[15] R. J. Goldston, R. B. White and A. H. Boozer, Phys.Rev.

Lett. 47, 647 (1981).
[16] R. Linsker, A.H. Boozer, Phys. Fluids 25, 143 (1982).
[17] Y. Xiao, P.J. Catto, Phys. Plasmas 13, 102311 (2006).
[18] D.R. Mikkelsen, H. Maassberg, M.C. Zarnstorff, C.D. Bei-

dler, et al., Fusion Science and Technology 51 166-180
(2007).

[19] H.E. Mynick, Phys. Plasmas 13, 058102 (2006).
[20] H. Sugama, T.-H. Watanabe, S. Ferrando-Margalet, (this

meeting, paper I-08).
[21] H.E. Mynick,W.N.G. Hitchon, Nucl. Fusion 23, 1053

(1983).
[22] K.C.Shaing, Phys. Fluids 27, 1567 (1984).
[23] D.E.Hastings, W.A. Houlberg, K.C.Shaing, Nucl. Fusion

25, 445 (1985).
[24] U Stroth, K Itoh, S-I Itoh, H. Hartfuss, H. Laqua, the ECRH

team, & the W7-AS team, Phys. Rev. Letters, 86, 5910
(2001).

[25] K. Ida, T. Shimozuma, H. Funaba, et al., Phys. Rev. Letters
91, 085003 (2003).

[26] T. Minami, A. Fujisawa, H. Iguchi, et al., Nucl. Fusion 44,
342 (2004).


