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Suppression of turbulence by mean flows in two-dimensional fluids
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A review of recent experimental studies of turbulence suppression by mean flows in quasi-two-dimensional
fluids is presented. Large-scale mean flows develop during spectral condensation of 2D turbulence as a result
of the inverse energy cascade in spatially bounded flow. The spectral energy which is accumulated at the
largest scale supports the mean flow which in turn affects turbulence. We show that such a flow can reduce the
energy flux in the inverse energy cascade range via shearing and sweeping of the turbulent eddies. The former
mechanism is more efficient at larger scales, while the latter acts on the smaller scales. Similar suppression of
turbulence has been found in the presence of externally imposed flows. Turbulent (inverse energy) cascade is
reduced in the presence of imposed flow, but still supports Kolmogorov-Kraichnan k −5/3 power law spectrum in
the energy range.
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1 Introduction

The idea of turbulence suppression in the presence of a
background sheared flow has its origin in the physics of
magnetically confined plasma. It was proposed in 1990
[1, 2] as a simple hydrodynamic model aimed at explaining
turbulence reduction near transport barriers which form in
plasma in the so-called high (H) confinement regime [3].
Since then this concept has received wide recognition in
the plasma literature (e.g. [4, 5, 6, 7]). The model of the
shear suppression is supported by substantial indirect ex-
perimental evidence, namely, the correlation between the
onset of the strong sheared flows in plasma and the re-
duction in the turbulent transport during transitions to im-
proved confinement.

The main mechanism of the shear suppression is as
follows. When a turbulent eddy is placed in a stable lami-
nar flow whose velocity varies in the direction perpendicu-
lar to the flow direction, it becomes stretched and distorted.
The shear suppression can be viewed as the reduction in the
eddy’s lifetime. It occurs when the inverse shearing rate
τs ≈ ω−1

s becomes shorter than the eddy turnover time, or
its lifetime, τe whatever is shorter, providing that the in-
teraction time between turbulence and flow is longer than
other time scales. A reduction in the spectral power in the
presence of a shear flow is due to the shortened correlation
time of eddies. Dimensional scaling analysis which takes
into account turbulent diffusion, shows that this shortened
correlation time τs

e is related to the shear straining time τ s

and the eddy turnover time τe as [8]: τs
e = τ

1/3
e τ

2/3
s . The

theory of the shear suppression is considered an extension
of the rapid distortion theory into the nonlinear regime [8].

author’s e-mail: Michael.Shats@anu.edu.au

Despite its wide recognition in plasma physics, and at-
tempts to extend its application to other fields (see e.g. [9]),
this hydrodynamic phenomenon is not a familiar one in
fluids [10]. This fact has triggered arguments both against
[11] and in favor [12] of the shear turbulence suppression
mechanism, casting a shadow on its existence in plasma.

Results reviewed in this paper represent the first ex-
perimental evidence of the turbulence suppression by mean
flows in quasi-two-dimensional fluids. First we describe
the experimental setup and methods of the turbulent flow
detection. Suppresion of turbulence is studied (a) during
spectral condensation of the spatially bounded flow, and
(b) in the presence of externally imposed mean flow.

2 Experimental setup and results

In the experiments reported here, turbulent flow is gener-
ated in stratified thin layers of electrolyte (NaCl water so-
lutions of different concentrations, heavier solution at the
bottom, total thickness of 6 mm). This setup is similar
to those used in [13] and [14]. Turbulence is generated
by forcing 576 J × B-driven vortices (24 × 24) in a cell.
Spatially varying, vertically directed (normal to the fluid
layers) magnetic field B is produced by a 24 × 24 matrix
of permanent magnets placed under the bottom of the fluid
cell (300 × 300 mm2) in a checkerboard fashion (10 mm
between the centers of magnetic dipoles). The schematic
of the experimental setup is shown in Fig. 1. Solid Perspex
square boundaries of various sizes are inserted to generate
spectral condensate. Two carbon electrodes on the either
side of the cell are connected to the power supply. An elec-
tric current in the electrolyte can be either modulated, for
example, by driving positive and negative current pulses
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Fig. 1 Schematic of experimental setup.

having random-in-time polarity and the pulse lengths, or
it can be DC. Since we are mostly interested in the devel-
opment of strong coherent condensate flows, a DC mode
is chosen in these experiments. Constant forcing is found
to be the most efficient in supporting coherent monopole
condensate. This agrees with findings of numerical sim-
ulations of the generation of large coherent structures in
2D turbulence [15]. The J × B forcing is chosen such that
there is no ripple on the free surface, which would violate
quasi-two-dimensionality of the flow.

To visualize the flow, imaging particles (polyamid, 50
μm diameter, specific gravity of 1.03) are suspended in
the top layer of the fluid and are illuminated using thin
(1 mm) laser sheet aligned parallel to the free surface of
the fluid. Laser light scattered by particles is filmed from
above, using video camera at 25 frames per second. Cross-
correlation based particle image velocimetry technique is
used to obtain the velocity fields from the sequence of the
video frames.

First we discuss the generation of the spectral conden-
sate. It is well known that the evolution of spectra in 3D
flows leads to the transfer of the spectral energy E(k), to-
wards smaller scales (larger k), a forward energy cascade,
until it reaches the dissipation scale determined by the vis-
cosity. Spectral regions of the turbulence forcing (k f ) and
of the dissipation range (kd) do not generally coincide. The
spectral range between them is called the inertial range.
Viscous processes determine the energy dissipation rate ε
in the system. Kolmogorov assumed that (a) the statistical
properties of turbulence in the inertial range (k << kd) are
determined only by k and ε, and (b) that ε is the universal
constant of a given flow in time and in space. Dimensional
considerations have led to the famous Kolmogorov law for
the spectral energy: E(k) = Cε 2/3k−5/3. In 2D flows, in ad-
dition to the energy conservation, enstrophy, or the volume
integral of the squared vorticity Ω = 1/2

∫
ω2dV (where

ω = ∇ × V is the vorticity and V is velocity) is also con-
served [16]. The existence of this second invariant of the

flow modifies the spectral transfer, which is determined
by both the energy and the enstrophy εω dissipation rates,
and leads to the onset of two inertial ranges. If energy
and enstrophy are injected into the system at k f , then en-
ergy in 2D flow cascades towards larger scales, or lower
k < k f (inverse energy cascade range), while the enstrophy
is transferred towards higher k > k f (forward enstrophy
cascade). The former is described by the Kolmogorov law,

E(k) = Ckε
2/3k−5/3, (1)

(though the energy is transferred in the opposite direction
to that in the 3D turbulence), while the latter is described
by

E(k) = Cωε
2/3
ω k−3, (2)

The maximum of the energy spectrum thus lies in the low-
k range at kE , and in the absence of the energy dissipation
at large scales kE can not be constant in time. In the pres-
ence of damping for large scales, for example via linear
damping μ, the scale corresponding to the maximum of the
spectrum, stabilizes at

kE ≈
(
μ3

ε

)1/2

. (3)

If the system size is larger than this dissipation scale
λE = π/kE , one should observe the stationary energy spec-
trum showing two inertial ranges corresponding to the in-
verse energy cascade (∝ k−5/3) and the direct enstrophy
cascade (∝ k−3). If however dissipative scale is smaller
than the system size, λE < L, spectral energy is accumu-
lated at the largest scale. Such a process, in which en-
ergy piles up in the largest scale kc, has been predicted
by Kraichnan in 1967 who also noted the similarity be-
tween the condensation of the turbulent energy and the
Bose-Einstein condensation of the 2D quantum gas [17].

A self-generated coherent flow can develop sponta-
neously during spectral condensation of the bounded 2D
turbulence [17]. In a large domain, inverse cascade pro-
ceeds up to the integral scale λE . When λE is larger than
the size of the boundary L, energy accumulates at the box
scale and self-generation of a large vortex occurs. This
phenomenon has been confirmed in numerical simulations
[18, 19, 20, 21] and has been observed in experiments
[22, 13, 14]. For given μ and ε, the easiest way to achieve
spectral condensation is to reduce the size of the boundary
to satisfy λE ≥ L. In the described experiments, square
boundaries of different sizes of L = 90 ÷ 120 mm were
used. The spectral condensation leads to the onset of the
self-generated mean flow, which interacts with the back-
ground turbulence.

First we consider the effect of the self-generated flow
on the bounded (L = 110 mm) turbulence [23]. The time
evolution of the total kinetic energy of the 2D turbulent
flow is shown in Fig. 2(a). The inverse energy cascade
leads to the development of larger eddies and to the growth



Proceedings of ITC/ISHW2007

E (a.u.)

0

0.4

0.8

1.2

0 20 40 60 80 100

t (s)(a)

(b) (c)

Fig. 2 Time evolution of the total kinetic energy (a) and instan-
taneous velocity fields at t = 13 s (b), and t = 71 s (c).

of the kinetic energy of the system. By about 10 s the ki-
netic energy reaches 80% of its maximum value. By this
time several large-scale coherent vortices develop in the
flow, as seen in Fig. 2(b). These vortices persist for 4-5
turnover times (about 10 s) before they start merging. Af-
ter this transient stage, large vortices merge to form a sin-
gle coherent vortex, which then persists in a steady state,
Fig. 2(c). This stable vortex imposes mean flow which af-
fects 2D turbulence.

We compare the turbulence spectra during the tran-
sient stage, at t = (9 − 17) s, and after the single vortex
formation, at t = (61 − 79) s. The analysis time in the
transient stage is limited to 8 s during which the flow is
quasi-steady. The wave number spectra are averaged over
N=200 realizations (400 in the steady condensate regime)
of the “instantaneous” velocity fields (computed every 40
ms using two consecutive video frames):

Etot(k) = 1/N
N∑

n=1

F(V)F∗(V), (4)

where F denotes Fourier transform and F ∗ is its complex
conjugate. This is a total spectrum which includes both
mean and fluctuating velocity. Before the large vortex for-
mation, this spectrum shows a power-law scaling of E(k) ∝
k−3 both above and below the forcing wave number k f =

350 m−1, Fig. 3(a). Such a scaling, which was already ob-
served in the experiments in the spectral condensate regime
[14] and in numerical simulations [24, 25, 26, 21], appar-
ently contradicts the E(k) ∝ k−5/3 spectrum expected for
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Fig. 3 Spectrum of the total spectral energy of the flow at t =
(9-17)s (a). Spectra of the turbulent velocity fluctuations
before, t = (9-17)s (open squares) and after the formation
of a single large vortex, t = (61-79)s (solid circles) (b).

the inverse energy cascade inertial range [17]. It was sug-
gested in [21] that a k−3 power law is due to the presence of
large-scale persistent vortices rather than due to the turbu-
lent cascade. To eliminate this effect, we subtract from the
instantaneous velocity the mean 〈V〉 = 1/N

∑N
n=1 V(x, y)

obtained by averaging over N instantaneous fields V(x, y).
The resulting spectra,

E f l(k) = 1/N
N∑

n=1

F(V − 〈V〉)F∗(V − 〈V〉) , (5)

computed for two time intervals, before and after the gen-
eration of the single vortex, are shown in Fig. 3(b). Such
subtraction, proposed in [21], leads to a spectrum less steep
than k−3, somewhat close to k−5/3.

After the formation of the single vortex, turbulence
levels are significantly reduced for the wave numbers in
the range of k < 160 m−1. The explanation of this will be
given below. The level of turbulent fluctuations changes
less between k ≈ 160 m−1 and the injection scale, k f ≈
350 m−1. That interval is too short to distinguish between
E f l(k) ∝ ε2/3k−5/3 and E f l(k) ∝ ε/τsk that one may expect
assuming that the scale-independent energy transfer is of
order of the shear time τ s. One can see that in the forward
cascade range (k ≥ k f ) fluctuations are also reduced. This
reduction at small k is significant (up to a factor of ten) and
reproducible.

Now we turn to the experiment in which a large-scale
mean flow was externally imposed on the quasi-2D turbu-
lence [23]. The flow is generated using large permanent
magnet, as illustrated in Fig. 4. In this case the boundary
box exceeds the integral scale (L ≈ 300 mm). We refer to
this configuration as to “unbounded” turbulence.

A large magnet (40 × 40 mm2) placed 2 mm above
the free surface imposes a large-scale vortex flow, which
slowly decays (for approximately 60 seconds) after the
magnet is removed. Instantaneous velocity fields before
and after the generation of this mean flow are shown in
Figs. 5(a,b). Energy spectra shown in Figs. 5(c) are com-
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Fig. 4 Schematic of the generation of external mean flow

puted after subtracting the mean flow, using Eq. 5. Both
with and without the large vortex, spectra are close to the
k−5/3 scaling. The mean flow reduces the spectral power
of the turbulent fluctuations everywhere within the inverse
cascade range by a factor of 8.

3 Analysis and discussion

In the presence of the self-generated large vortex the ob-
served reduction in the spectral power of turbulent eddies
is consistent with the mechanism of the shear turbulence
suppression. We estimate the shear suppression criterion
s = ωsτe > 1 as follows. The turnover time of an eddy of
the scale l is

τe ≈ l
〈|δV(l)|〉 =

l
S 1(l)

, (6)

that is estimated from the mean velocity difference across
scale l,

δV(l) = V(r0 + l) − V(r0). (7)

The angular brackets denote averaging over all possible po-
sitions r0 within the boundary box (or within the compu-
tation box in the “unbounded” case), and S 1 = 〈δV〉 is
the first-order structure function averaged over N velocity
fields.

To estimate the shearing rate of the large-scale mean
flows, both self-generated [Fig. 2(c)] and externally forced
[Fig. 5(b)], the polar coordinate system with its origin in
the center of the vortex is used. The azimuthal component
of the velocity Vθ dominates the flow after the vortex is
formed. Its radial distribution is shown in Figs. 6(a,c). In
the case of the self-generated flow radial coordinates r =
0 and r = 0.05 m correspond to the vortex center and to
the square boundary respectively. In the case of externally
driven flow r = 0.09 m corresponds to the size of the im-
aged area of “unbounded” turbulent flow. It is seen that
the amplitude of velocity of the externally forced flow is a
factor of two higher than in the self-organized case. The
shearing rate is determined as follows:

ωs = l
dΩ
dr
, (8)
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Fig. 5 Instantaneous velocity fields of “unbounded” turbulence
(a) and in the presence of externally generated large scale
azimuthal flow. Spectra of turbulence are computed with
mean flow subtracted: before the large flow is imposed
(open squares) and in the presence of the mean flow (solid
circles). Third-order structure functions without (open
squares) and with (solid circles) externally imposed mean
flow (d).
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where l is the radial extent of the eddy. The derivative of
the radially localized angular velocity Ω = Vθ/r is deter-
mined as

dΩ
dr
=

1
r

dVθ
dr
− Vθ

r2
, (9)

which is zero for the solid-body mean flow rotation and
nonzero for the sheared flow. Figs. 6(b,d) show dΩ/dr for
the self-generated and externally driven shear flows. Since
both ωs and τe grow with l, the shear affects larger scales
first.

For the case of the self-generated flow dΩ/dr ≈ 15
(ms)−1, S 1 ≈ 8 × 10−3 m/s, and the shearing parameter
s ≈ 2 × 103l2. The criterion for the shear suppression,
s > 1, is satisfied for the scales l > 0.022 m. This gives
an estimate of the affected wave number range k = π/l ≤
145 m−1, which is in agreement with the observation of
the turbulence suppression in the wave number range of
k ≤ 160 m−1 seen in Fig. 3(b).

For the externally forced mean flow dΩ/dr ≈ 22
(ms)−1, S 1 ≈ 2 × 10−3 m/s, and the shearing parameter
s ≈ 1.1 × 104l2. The suppression criterion is satisfied for
the scales l > 0.0095 m, which extends very close to the
forcing scale l f ≈ 9 mm (k f = 350m−1). Again, this is
in agreement with our observation that the spectral energy
is reduced everywhere within the inverse energy cascade
inertial range, Fig. 5(c).

The externally driven flow must be strong enough to
affect the energy flux through the k < k f inertial range.
To test this we computed the third-order structure function
S 3(l) =< δV(l)3 > to estimate the energy flux ε from the
Kolmogorov law,

S 3(l) = −3
2
εl. (10)

Similarly to S 1, the third-order structure function S 3 is
computed by averaging over the boundary box and then by
averaging S 3 in time over 100 subsequent velocity fields.
It should be noted that δV(l) represents here the longitu-
dinal velocity increment, δV ||(l), defined in Kolmogorov’s
theory [16]. Also, S 3 is computed allowing positive and
negative values of the velocity increments δV ||(l). Such
computations require very large statistical averaging to ob-
tain converged results. We obtained satisfactory conver-
gence for the steady-state “unbounded” turbulence and for
the turbulence in the presence of the slowly decaying ex-
ternally driven flow. The result is illustrated in Fig. 5(d).
Both before and after the mean flow is imposed, S 3 is a
linear function of the scale l. As a result, the energy flux
ε = −(2/3)S 3/l is constant to within 15% for all scales
in the energy inertial range. This flux ε is reduced in the
presence of the flow by one order of magnitude compared
to the case without the flow.

The reduction in the energy flux can be attributed to
two phenomena in this case. First, it is the shearing of
the forcing scale vortices discussed above. However, the
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Fig. 7 Schematic illustration of the effect of sweeping of the
forcing scale vortices by mean flow relative to the mag-
nets

force-connected vortices (with k ≈ k f ) must be more re-
sistant to shearing than the inertial scale eddies at k < k f .
Second, the force-fed vortices are swept by the mean flow
relative to the magnets, which must also reduce the energy
input. This effect is schematically illustrated in Fig. 7.

One can define a dimensionless sweeping parameter
sw = ωswτe, where the sweeping rate is given by ω sw =

Vθ/l. Since

sw =
Vθ
l

l
S 1
∼ Vθ(εl)−1/3, (11)

sweeping acts more efficiently on the smaller scales (while
shearing is more effective on larger scales). At the forcing
scale l f , this parameter is sw ≈ 0.75 for the self-generated
flow and it is sw ≈ 7 with externally forced mean flow.
Thus the sweeping can be responsible for the reduction
in the energy flux through the inverse cascade range in
the presence of an externally-induced flow. The dominant
role of sweeping in this case is also supported by the fact
that the spectrum of the inverse cascade remains k−5/3, just
shifted down as shown in Fig. 5(c). Such modifications to
the spectrum are also consistent with a ten-fold decrease in
the energy flux ε, since E(k) = Ckε

2/3k−5/3.
Let us stress the qualitative difference between

Fig. 3(b) (strong decrease at small k) and Fig. 5(c) (uniform
decrease for all k) which shows that there are two mecha-
nisms of suppression. Sweeping may also be responsible
for the reduction in the enstrophy flux through the forward
cascade (k > k f ) in the presence of the self-generated flow
[see Fig. 3(b)]. In this case, we could not obtain statisti-
cally converged computations of S 3 during spectral con-
densation to compare ε before and after the formation of
the large vortex.

4 Conclusions

We have shown in [23] that turbulence is quasi-2D flow
is significantly reduced in the presence of a large coherent
vortex. In the case of a self-generated vortex, larger scales
are affected more than the smaller ones. This qualitatively
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agrees with the description of the shear turbulence suppres-
sion mechanism as a reduction in the eddy life-time [1]. In
the presence of externally imposed flow two effects may be
responsible for the observed strong reduction in the turbu-
lence level. The vortex sweeping by the mean flow seems
to play an important role here. In this case the shape of the
spectrum is not modified but the (inverse) spectral energy
flux is substantially reduced.

It should be noted that three conditions needed for the
shear turbulence suppression in fluids discussed in [10] are
satisfied in our experiment. The shear flow must be stable
in a sense that the time during which turbulence remains in
the region of flow shear should exceed both the eddy life-
time τe and the shear straining time τ s. The shear flow is
stable in our experiment. Due to the dominant flow in the
azimuthal direction after the monopole formation, turbu-
lence stays in the region of shear, ρ = (0.2 − 0.9), Fig. 6.
Finally, the 2D dynamics of the flow is imposed on the
system by the stratification of thin fluid layers.

The mechanism of the shear suppression in plasma is
often described as the loss of coherence by a turbulent eddy
and a breakup into two eddies of the smaller scale (e.g.
[9]). One would expect in this case an increase in the spec-
tral power of eddies of intemediate scales. We have not
found any evidence in support of the eddy breakup. Ob-
servations in 2D fluids are more consistent with the idea
of reduction in the turnover time of the larger scale eddies
[8]. In this case the inverse energy cascade is arrested at the
scales affected by the shear flow, which presumably leads
to the reduction in the spectral energy, similar to that seen
in Fig. 3(b).

[1] H. Biglari, P.H. Diamond and P.W. Terry, Phys. Fluids B 2
(1990) 1.

[2] K.C. Shaing, E.J. Crume and W.A. Houlberg, Phys. Fluids B
2 (1990) 1492.

[3] F. Wagner et al. Phys. Rev. Lett. 49 (1982) 1408.
[4] T.S. Hahm and K.H. Burrell, Phys. Plasmas 2 (1995) 1648.
[5] T.S. Hahm, Phys. Plasmas 4 (1997) 4074.
[6] K.H. Burrell, Phys. Plasmas 6 (1999) 4418.
[7] K.H. Burrell, Phys. Plasmas 4 (1997) 1499.
[8] P.W. Terry, Rev. Mod. Phys. 72 (2000) 109.
[9] E.-J. Kim, Astron. and Astrophysics 441 (2005) 763.
[10] P.W. Terry, Phys. Plasmas 7 (2000) 1653.
[11] D.C. Montgomery, Phys. Plasmas 7 (2000) 4785.
[12] P.W. Terry, Phys. Plasmas 7 (2000) 4787.
[13] J. Paret and P. Tabeling, Phys.Fluids 10 (1998) 3126.
[14] M.G. Shats, H. Xia, H. Punzmann, Phys. Rev. E 71 (2005)

046409.
[15] N.N. Kukharkin, J. Sci. Comp. 10 (1995) 409.
[16] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov

(Cambridge University Press, Cambridge,1995).
[17] R.H. Kraichnan, Phys. Fluids 10 (1967) 1417.
[18] M. Hossain, W. H. Matthaeu, D. Montgomery, J. Plasma

Phys. 30 (1983) 479.
[19] L. M. Smith, V. Yakhot, Phys. Rev. Lett. 71 (1993) 352.
[20] D. Molenaar, H.J.H. Clercx and G.J.F. van Heijst, Physica

D 196 (2004) 329.
[21] M.Chertkov, C. Connaughton, I. Kolokolov and V. Lebedev,

Phys. Rev. Lett. 99 084501 (2007).

[22] J. Sommeria, J. Fluid Mech. 170 (1986) 139.
[23] M.G. Shats, H. Xia, H. Punzmann and G. Falkovich Phys.

Rev. Lett. 99 164502 (2007).
[24] V. Borue, Phys. Rev. Lett. 72 (1994) 1475.
[25] L.M. Smith and F. Waleffe, Phys. Fluids 11 (1999) 1608.
[26] C. V. Tran and J. C. Bowman, Phys. Rev. E 69 (2004)

036303.


