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The gyrokinetic code GS2 has been used to calculate the linear growth rates of the underlying micro-instabilities 
presumably responsible for the anomalous transport in HSX. With ECRH heating (Te >> Ti), the dominant 
long-wavelength instability is the trapped electron mode (TEM). To test whether available TEM transport models 
can reproduce the transport in HSX, the Weiland ITG/TEM transport model is used, in addition to calculations of 
neoclassical transport, to predict plasma profiles in HSX. To approximate the 3D geometry of HSX in the Weiland 
model, the necessary input geometry information is taken from the region in HSX where the fastest growing modes 
are spatially localized in the 3D GS2 calculations. Specifically, the local curvature/∇B scale lengths (~R/3) and 
helical ripple (εH) are used in place of the axisymmetric values (R and εT = r/R, respectively). With these 
approximations, the TEM linear growth rates predicted by the Weiland model agree quantitatively (within 30%) 
with those predicted by the 3D GS2 calculations for HSX experimental parameters. Predicted density and 
temperature profiles using the above transport estimates are in reasonable quantitative agreement with a number of 
experimental profiles in the QHS configuration. The predicted confinement times are within ~10% of the 
experimental confinement times. 
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1. Introduction 
It has become routine to optimize stellarators using 

neoclassical theory [1]. It is hoped that in the future, 
stellarators may also be optimized to reduce anomalous 
transport, thought to be caused by plasma turbulence.  
Indeed, there is evidence in LHD that anomalous 
transport is reduced when neoclassical transport is 
reduced [2]. While significant advances have been made 
in the predictive capability for turbulent transport in 
tokamaks [3], relatively little work has been performed 
for 3D toroidal configurations such as stellarators. 

Turbulent transport in tokamaks (caused by drift 
waves) has been modeled through the use of quasi-linear 
transport estimates that have been scaled to match 
non-linear simulations [4-6]. Suppression of turbulent 
transport via equilibrium E×B shear has also been 
included to successfully model H-mode pedestals and 
internal transport barriers [7]. These two features appear 
to provide the dominant scaling in predicting turbulent 
transport (via drift waves) in tokamak plasma. 

Measured turbulence characteristics [8] and energy 
confinement time scaling [9] are quite similar in 
tokamaks and stellarators. Furthermore, recent non-linear 
simulations [10,11] have demonstrated that predicted 

turbulence characteristics in stellarator geometries display 
similarity to those predicted in tokamaks. However, 
because of the 3D shaping, stellarator non-linear 
simulations require increased resolution to treat the 
non-symmetric geometry and various classes of trapped 
particles, and are therefore more computationally 
expensive. 

Given the similarity in turbulence and energy 
confinement between stellarators and tokamaks, a logical 
first step in performing predictive transport modeling for 
present stellarator experiments is to follow the same 
framework as used for tokamak predictions. Following 
this reasoning, this paper will present predictions of 
density and temperature profiles in the HSX stellarator 
using a tokamak transport model. To justify the use of 
this model for the 3D geometry in HSX, comparisons will 
be made between linear growth rates predicted by the 
tokamak model, and those calculated using a 3D 
gyrokinetic code that uses the HSX equilibrium. 
 

2. 3D Gyrokinetic Microstability Calculations 
The initial value gyrokinetic code GS2 [12] has been 

previously used to calculate linear micro-stability in a 
stellarator configuration [13]. To perform these 
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calculations, 3D equilibrium are calculated using VMEC 
[14,15], which are then transformed into Boozer 
coordinates using TERPSICHORE [16]. GS2 uses a 
ballooning representation, and the necessary geometry 
coefficients along a field line are calculated using VVBAL 
[17]. Since stellarators in general have multiple ripples in 
|B| along a field line, care must be taken in creating a grid 
that captures these additional non-symmetric ripples. 
Multiple grids have been created for the quasihelically 
symmetric (QHS) configuration of HSX with varying 
number of grid points to determine how well these 
additional ripples must be resolved to reach a converged 
solution. For the calculations shown in this paper, 400 grid 
points (over a range of θ = ±4π) were sufficient. Typically 
16 energy and ~30 pitch angle grid points were needed for 
the calculations to converge. To verify accuracy, a few 
cases were benchmarked against the independent linear 
gyrokinetic FULL code for the HSX geometry [18]. The 
GS2 calculations were performed on the NERSC IBM SP3 
supercomputers using up to 256 processors, requiring a 
few minutes per run. 

The linear stability calculations were performed on a 
field line where the magnetic axis undergoes the largest 
excursion to the outboard side, and hence has the strongest 
bad curvature drive. Figure 1 (top) shows eigenfunctions 
calculated for the QHS configuration for multiple poloidal 
wavenumbers (kθρs = 0.3-0.8), at a normalized minor 

radius of ρ = 0.86, for experimentally relevant parameters 
(a/LTi = 0, Te/Ti = 2, a/Ln = a/LTe = 3, υ = 0). For these 
conditions, the instability is the collisionless trapped 
electron mode (CTEM), with a mode frequency 
propagating in the electron diamagnetic drift direction. 
Also shown in Fig. 1 are |B| along a field line (middle) and 
the term proportional to the curvature drift (bottom). The 
eigenfunctions for these unstable TEMs are strongly 
localized in the low field, bad curvature region of the 
device, where the trapped particles exist. The structure of 
these instabilities is very similar to that observed in 
tokamaks, due to the quasisymmetric field. 

 

3. 1D Predictive Transport Modeling 
To model the anomalous particle and electron heat 

transport in HSX [19], the Weiland model [4] is utilized.  
The Weiland model is a toroidal fluid model for the ion 
temperature gradient (ITG) and TEM instabilities.  It is a 
linearized set of equations that provides both linear 
stability predictions, and quasi-linear transport estimates of 
particle, and ion and electron heat transport. These 
transport estimates have been checked against a limited 
number of non-linear simulations [4,20] with good results. 
The Weiland ITG/TEM model forms the core of the 
Multi-Mode Model [21] used for numerous tokamak 
calculations. 

 As input, the Weiland model requires density and 
temperature gradient scale lengths (Ln, LTe, LTi), 
temperature ratio (Te/Ti), wavenumber (kθρs), trapped 
particle fraction (ft), and a ∇B/κ scale length (LB) to 
approximate the toroidal drift terms. In a tokamak, the 
trapped particle fraction is simply found using the toroidal 
ripple, ε

Fig.1 Normalized eigenfunctions (top), |B| (center), 
and curvature drift (bottom) for GS2 
calculations in HSX. 

B

T = r/R, )1(2f TTt ε+ε= , and the ∇B/κ scale 
length is the major radius, LBB = R. 

To use the axisymmetric Weiland model for HSX, two 
approximations must be made to account for the local 3D 
geometry. These assumptions are based on the 3D 
gyrokinetic calculations discussed in Sec. 2. Since the 
unstable eigenmodes are strongly localized in the low field, 
bad curvature region (Fig. 1), the trapped particle fraction 
and ∇B/κ scale length are taken from this localized region 
of HSX. Because of the quasihelical symmetry, the trapped 
particle fraction is calculated using the dominant helical 
ripple (εH = 0.14⋅r/a = 1.4⋅r/R). In this location, where the 
axis undergoes an excursion to the outboard side, the local 
curvature is roughly three times larger than that of a 
tokamak with the same major radius. Therefore, the ∇B/κ 
scale length is reduced by a factor of three, LB = R/3. B

The Weiland model has been used with the above 
approximations to calculate the linear stability of HSX 
plasmas. Growth rates have also been calculated for the 
same input parameters using the 3D GS2 code for the QHS 
equilibrium. A comparison of growth rates is shown in Fig. 
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2 for a scan over density and electron temperature gradient, 
with the other parameters the same as in Fig. 1. As seen in 
the top two plots, the growth rates from the Weiland model 
are close in magnitude to the 3D GS2 calculations. For the 
range of gradients indicative of experiment (highlighted 
red lines) the agreement is better than 30%. If the local 
HSX geometry approximations are not used, the Weiland 
model underpredicts the growth rates by about a factor of 
two (Fig. 2, bottom). 

 

In order to predict density and temperature profiles, 
1-D flux surface averaged transport equations for electron 
density and temperature are solved numerically (Eqs. 1). 
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A multi-mode model approach is used, summing transport 
from the Weiland model (with geometry approximations), 
neoclassical transport (calculated using DKES [22,23]), 
and a small transport contribution from a resistive 
ballooning mode model, as used in [21]. For the 
neoclassical and Weiland model, the transport components 
are represented by both diffusive (D,χ) and convective 
(V(n), V(nT)) components. The ECRH power deposition 
profile is calculated using a ray-tracing code, and the total 
absorbed power is determined from the time response of 
the diamagnetic flux loop during ECRH turn off. The 
particle source rate profile used is based on 3D neutral gas 
calculations [19]. The total magnitude is adjusted to 
minimize the difference in predicted and measured 
densities, but is usually within a factor of two of the neutral 
gas calculations that have been scaled to match absolutely 
calibrated Hα measurements. 

GS2 - HSX

Weiland - HSX

Weiland - TOK

GS2 - HSX

Weiland - HSX

Weiland - TOK

 

Fig.2 Growth rates (105 s-1) calculated in HSX using 
3D GS2 (top), the Weiland model with 
geometry approximations (center), and the 
Weiland model without geometry 
approximations (bottom).  The highlighted 
lines represent typical experimental gradients. 

Using the above sources and transport models, Eqs. 
1 are integrated to steady state. Figure 3 shows a 
comparison of predicted and measured electron density 
and temperature profiles (using Thomson scattering) for 
B=1.0T QHS plasmas for two different injected powers 
(Pinj = 44 & 100 kW, O1 ECRH). The density profiles 
agree very well across the entire minor radius. The 
temperature profiles agree outside a normalized minor 
radius of ρ = 0.3, but the model underpredicts the core 
temperature. For four different injected powers (including 
two cases not shown here), the rms deviation of the 
simulated and experimental density profile 

experiment

simulation

experiment

simulation

Fig.3 Predicted and measured electron density (top) 
and temperature (bottom) profiles for the QHS 
configuration for Pinj = 44 kW (left) and 100 
kW (right).
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The rms deviation for Te is considerably higher (40%). 
The discrepancy of the core Te profiles is due to a 

large χe from the Weiland TEM between ρ = 0.2-0.3, and 
a large neoclassical χe as the magnetic axis is approached. 
It is of interest to note that in the region between ρ = 
0.2-0.3, the radial electric field predicted from the 
neoclassical ambipolarity constraint varies rapidly due to 
a change from the ion root to the electron root as the hot 
core is approached. In this region, estimated E×B shear 
rates [24] are larger than the linear TEM growth rates 
predicted from the transport modeling. This may indicate 
that E×B shear suppression could be important for 
determining the appropriate anomalous transport 
contribution. 

Although the central Te is not predicted with 
accuracy, the simulated energy confinement times agree 
within 10% of the experimental confinement times. 
Figure 4 shows the kinetic electron energy confinement 
times measured experimentally (red) and predicted by the 
simulations (blue) for four injected powers (26, 44, 70, 
100 kW). The predicted confinement times scale like 
~P-0.57, similar to empirical scaling laws [9] and to that 
expected from gyroBohm transport. Also shown are the 
energy confinement times determined from the 
diamagnetic measurements for similar line-averaged 
densities (black). These confinement times have a slightly 
weaker scaling with absorbed power, ~P-0.42. 

 

 

 
 

4. Conclusions 
The Weiland ITG/TEM anomalous transport model 

has been used to predict transport in the HSX stellarator. 
By using approximations to represent the local geometry in 
HSX, the Weiland model predicts linear growth rates that 
agree within 30% of those calculated using the 3D 
gyrokinetic code GS2. Although non-linear effects or E×B 
shear suppression have not been included, the linear 
scaling should be captured reasonably well by this 
approximation. Predicted density profiles and energy 
confinement times (using the Weiland model plus 
appropriate neoclassical calculations) agree within 10% of 
experimentally measured values. Root mean square 
deviations in the electron temperature profile are larger 
(40%) due to a systematic underprediction of the core Te. 
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