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We study the resistive instabilities typically observed in the Large Helical Device (LHD) in order to sys-
tematically investigate the effects of the resistive magnetohydrodynamics (MHD) instabilities on the plasma
confinement. The resistive instabilities with the low toroidal mode number are investigated by using the three-
dimensional linear resistive MHD code FAR3D. It is confirmed that both the growth rate and the mode width
obey the theoretical formula of the gravitational interchange mode independent of the toroidal mode number.
The range of the magnetic Reynolds number, in which the growth rate and/or the mode width obey the theoretical
formula, is clarified. It is found that the growth rate is proportional to the mode width when beta is constant.
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1 Introduction

It is important to understand the magnetohydrodynamic
(MHD) equilibrium and stability properties for the real-
ization of the nuclear fusion reactor. In a helical device,
such as the Large Helical Device (LHD)[1] in Japan, the
complex three-dimensional (3D) MHD study is needed for
the successful operation. The MHD instability modes typi-
cally observed in the LHD experiments are summarized as
follows. Some modes, of which the dependence property
on the magnetic Reynolds number is similar to the resis-
tive gravitational interchange mode[2], are obtained in the
peripheral region of the high beta plasma with the strong
magnetic shear. Others are frequently monitored in the
core region of the high aspect ratio plasma with the rel-
atively weak magnetic shear.

It is the purpose of this study to systematically inves-
tigate the effects of the resistive MHD instability on the
plasma confinement in the LHD. Consequently, the typi-
cal MHD instability modes are numerically analyzed by
using the 3D resistive MHD code FAR3D[3]. We espe-
cially focus on the mode width, i.e., the resistive layer
thickness and systematically investigate the relationships
between mode width (W), beta (〈β〉), growth rate (γ) and
magnetic Reynolds number (S).

In this paper, the resistive MHD instability modes in
the high beta plasma with the strong magnetic shear are de-
scribed. The outline of the FAR3D code and the numerical
conditions are given in Section 2. The results of the calcu-
lations are summarized in Section 3. Section 4 is devoted
to a brief summary.
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2 Numerical Model

As mentioned in the preceding section, the FAR3D code
is a 3D resistive MHD code[3]. In this code, a set of
resistive MHD equations is time-advanced in the Boozer
coordinates[4]. And the perturbed quantities are expanded
in Fourier series in the generalized poloidal and toroidal
angles by using the poloidal mode number (n) and the
toroidal mode number (m). FAR3D appears in different
forms depending on the approximation and the treatment
for the MHD equations. We adopt one of the some ver-
sions of FAR3D, in which the reduced equations[3]:
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are linearly calculated, where the velocity and the magnetic
field are described asv =

√
g∇ζ×∇Φ andB = R0∇ζ×∇Ψ,

respectively.
The used MHD equilibria, i.e., the high beta plasma

with the strong magnetic shear, is generated by using the
3D equilibrium code VMEC[5]. The equilibrium is de-
scribed by using 1,000 radial grid points, and 20 helical
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Fig. 1 Radial profiles ofι/2π andP in the equilibrium using in
this study.

(n , 0) and 3 toroidal (n = 0) Fourier modes. Figure
1 shows the rotational transform (ι/2π) and the pressure
(P) of the used equilibrium, in which the volume-averaged
beta (〈β〉) are 0.87, 1.51, 1.99 2.56, and 3.05 %, respec-
tively.

In this paper, the resistive instabilities with the low
toroidal mode numbers (n = 1,2,3) are described. It is
seen from Fig. 1 that there are the rational surfaces of
m/n = 1/1, 2/1, 2/2, 3/2, 4/2, 3/3, 4/3, 5/3, 6/3.

As mentioned in Section 1, we pay attention to the
mode width, i.e., the resistive layer thickness. The mode
width (W) is defined as the region that the growing speed
of the instability to the radial direction (Vρ) is larger than
70 % of the peak value. It is noted that∂ξ/∂t = Vρ, where
ξ is the perturbation to the radial direction. A example of
the radial profiles ofVρ, i.e., the mode structure, is shown
in Fig.2.
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Fig. 2 Radial profiles ofVρ of m/n = 1/1 modes in the case of
〈β〉 = 1.99 %.

3 Results

3.1 n = 1 mode

In the cases of〈β〉 ≤ 1.51 %, bothm/n = 1/1 and 2/1
modes are unstable and their peak values ofVρs are almost
the same. When the calculation without them/n = 2/1
mode is done to determine the primary unstable mode,γ

remains the same as the results of the calculations includ-
ing them/n = 2/1 mode. Bothm/n = 1/1 and 2/1 modes
also appear in the cases of〈β〉 ≥ 1.99 %. In these cases,
the peak value ofVρ of m/n = 1/1 mode is larger than that
of m/n = 2/1 mode andγ remains the same as the results
of the calculation withoutm/n = 2/1 mode. Therefore, the
m/n = 1/1 mode is the primary unstable mode. There exist
the rational surfaces ofm/n = 1/1 aroundρ ' 0.89.

The relationships betweenS andγ are shown in Fig. 3,
and the relationships betweenS andW are shown in Fig. 4.
It can be seen from Figs. 3 and 4 that bothγ andW are pro-
portional toS−1/3. This dependency is similar to the resis-
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Fig. 3 Relationships betweenS andγ in the case ofm/n = 1/1
mode.
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Fig. 4 Relationships betweenS andW in the case ofm/n = 1/1
mode.
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Fig. 5 Relationships betweenW andγ in the case ofm/n = 1/1
mode.

tive gravitational interchange mode[2]. Such dependency
of γ andW onS, however, becomes small when〈β〉 = 3.05
% and log10 S > 6.

Figure 5 shows the relationships betweenW andγ. In
each〈β〉 cases,γ is proportional toW. The slopes become
steep with〈β〉 increasing.

3.2 n = 2 mode

In the case ofn = 2, only them/n = 3/2 mode is observed
as the unstable mode. The rational surfaces ofm/n = 3/2
exist aroundρ ' 0.63.

The relationships betweenS andγ are shown in Fig. 6,
and the relationships betweenS andW are shown in Fig. 7.
Bothγ andW are proportional toS−1/3 in the case of〈β〉 =
0.87 %. When〈β〉 ≥ 1.51 % and log10 S > 5, however,γ
andW are almost independent ofS. Bothγ andW of the
m/n = 3/2 mode hardly increase with〈β〉 in the cases of
〈β〉 ≥ 1.99 % γ of the m/n = 3/2 mode as well asγ of
them/n = 1/1 mode is proportional toW. The slopes also
become steep with the increase of〈β〉 (Fig. 8).

Compared these results of them/n = 3/2 mode with
those of them/n = 1/1 mode,γ of them/n = 3/2 mode is
larger than that of them/n = 1/1 mode. On the other hand,
W of them/n = 3/2 mode is slightly smaller than that in
them/n = 1/1 mode. The range ofS, in which γ andW
∝ S−1/3, in n = 2 case is narrower than that inn = 1 case.
In the cases of〈β〉 ≥ 2.56 %, the dependency ofγ andW
on 〈β〉 in n = 2 case is smaller than that inn = 1.

3.3 n = 3 mode

In the case of〈β〉 = 0.87 %, only them/n = 5/3 mode
is unstable. Them/n = 4/3 unstable mode, however, ap-
pears in the calculations without them/n = 5/3 mode. In
this case,γ is larger than that in the calculation includ-
ing the m/n = 5/3 mode. Although bothm/n = 4/3
andm/n = 5/3 modes are unstable in the〈β〉 = 1.51 %
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Fig. 6 Relationships betweenS andγ in the case ofm/n = 3/2
mode.
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Fig. 7 Relationships betweenS andW in the case ofm/n = 3/2
mode.
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Fig. 8 Relationships betweenW andγ in the case ofm/n = 3/2
mode.
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case,Vρ of them/n = 5/3 mode is larger than that of the
m/n = 4/3 mode. In the calculations withoutm/n = 5/3
mode, however, them/n = 4/3 mode becomes unstable
and itsγ is larger than that in the calculation including the
m/n = 5/3 mode. When〈β〉 ≥ 1.99 %, bothm/n = 4/3
andm/n = 5/3 modes are unstable. However,Vρ of the
m/n = 4/3 mode is larger than that of them/n = 5/3
mode. These results indicate thatm/n = 4/3 mode is the
primary unstable mode. There are the rational surfaces of
m/n = 4/3 aroundρ ' 0.72.

4 5 6 7 8
10

-4

10
-3

10
-2

10
-1

10
0

γ

log
10

S

 0.87 %

 1.51 %

 1.99 %

 2.56 %

 3.05 %
S

-1/3

Fig. 9 Relationships betweenS andγ in the case ofm/n = 4/3
mode.
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Fig. 10 Relationships betweenS andW in the case ofm/n = 4/3
mode.

The relationships betweenS andγ are shown in Fig. 9,
and the relationships betweenS andW are shown in Fig.
10. γ is proportional toS−1/3 when〈β〉 ≤ 1.51 %. On the
other hand,W is proportional toS−1/3 only if 〈β〉 = 0.87
%. In high beta and log10 S > 6 cases, the dependency
of γ andW on S become small. Such changes of the de-
pendency ofW occur in lower beta cases than those ofγ.
The dependencies ofγ and W of the m/n = 4/3 mode
on 〈β〉 is as small as that of them/n = 3/2 mode in the
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Fig. 11 Relationships betweenW andγ in the case ofm/n = 4/3
mode.

case of〈β〉 ≥ 2.56 %. As shown in Fig. 11,γ of the
m/n = 4/3 mode is also proportional toW and the slopes
become steep with the increase of〈β〉.

Compared these results ofn = 1, n = 2 andn = 3
modes,γ of n = 3 mode is the largest in threen cases. On
the contrary,W of n = 3 mode is the smallest. The range
of S, in whichγ andW ∝ S−1/3, in n = 3 case is narrower
than that inn = 2 case.

4 Summary

In this paper, the lown resistive instability modes in the
typical LHD high beta plasma with the strong magnetic
shear are analyzed by using the FAR3D code.

It is found that the primary unstable modes arem/n =
1/1, 3/2, 4/3. The rational surfaces of these modes ex-
ist in the plasma periphery (ρ > 0.6). It is confirmed that
bothγ andW obey the theoretical formula of the gravita-
tional interchange mode(∝ S−1/3) independent ofn. Their
dependencies onS become small when〈β〉 and/or S are
high. The range ofS, in which γ and/or W are propor-
tional to S−1/3, becomes narrow asn decreasing. When
〈β〉 = const., γ is proportional toW. The slope becomes
steep with〈β〉 increasing.

In near future, the resistive instabilities ofn > 4 will
be studied. In addition, the resistive instabilities in the dif-
ferent equilibrium of the LHD will also be investigated.
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