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A set of reduced equations is derived without making any assumption on the number of field periods.
The equilibrium used in the equations is the exact three-dimensional equilibrium without any average in the
toroidal angle. Using this set of equations, we study the ideal and resistive MHD properties of different LHD
configurations. The linear results are compared with the ones obtained from the full MHD equations in the
pressure-convection limit. The agreement is very good.
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1 Introduction

Pressure-driven instabilities are a key feature in stellara-
tor stability, since no net toroidal current flows in the
plasma, avoiding the appearance of current-driven insta-
bilities. Modes with high poloidal wavenumber m are usu-
ally studied using the ballooning formalism, which reduces
the stability problem to finding the eigenvalue of a system
of differential equations to be solved along the magnetic
lines. The stellarator expansion can be applied to study the
stability of modes with low toroidal wavenumber n whose
variation along filed lines is slow compared with the vari-
ation of the stellarator terms. A reduced set of equations
expressed in terms of the equilibrium flux coordinates was
derived for those modes [1]. They are formally the same
as the reduced set of MHD equations for a tokamak.

The calculation of global modes using the full three-
dimensional equilibrium has been based on formulations
of the ideal MHD energy principle in magnetic coordi-
nates [2, 3]. However, these formulations cannot include
the effect of resistivity and are not suitable for nonlinear
calculations. In order to be able of studying the nonlin-
ear evolution, we developed a numerical code (FAR3D),
which solves the full set of resistive MHD equations [4].

2 Reduced Equations

For high-aspect ratio configurations with moderate β-
values (of the order of the inverse aspect ratio), we can
apply the method employed in Ref. [1] for the derivation
of the reduced set of equations without averaging in the
toroidal angle. In this way, we get a reduced set of equa-
tions using the exact three-dimensional equilibrium. In this
formulation, we include linear helical couplings between
mode components, which were not included in the formu-
lation developed in Ref. [1].
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The main assumptions for the derivation of the set of
reduced equations are high aspect ratio, medium β (of the
order of the inverse aspect ratio ε), small variation of the
fields, and small resistivity. With these assumptions, we
can write the velocity and perturbation of the magnetic
field as

v =
√

gR0∇ζ × ∇Φ, B = R0∇ζ × ∇ψ, (1)

where ζ is the toroidal angle, Φ is a stream function pro-
portional to the electrostatic potential, and ψ is the pertur-
bation of the poloidal flux.

The equations, in dimensionless form, are
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, where ρm is the mass den-
sity. All lengths are normalized to a generalized minor ra-
dius a; the resistivity to η0 (its value at the magnetic axis);
the time to the poloidal Alfvén time τhp = R0(µ0ρm)1/2/B0;
the magnetic field to B0 (the averaged value at the mag-
netic axis); and the pressure to its equilibrium value at he
magnetic axis. The Lundquist number S is the ratio of the
resistive time τR = a2µ0/η0 to the poloidal Alfvén time.

Equilibrium flux coordinates (ρ, θ, ζ) are used. Here, ρ
is a generalized radial coordinate proportional to the square
root of the toroidal flux function, and normalized to one at
the edge. The flux coordinates used in the code are those
described by Boozer [5], and

√
g is the Jacobian of the co-

ordinates transformation. The code uses finite differences
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Fig. 1 Equilibrium profiles of the rotational transform and cur-
vature for β0 = 2 × 10−3. The LHD configuration is de-
scribed in the text.

in the radial direction and Fourier expansions in the two
angular variables. The numerical scheme if semi-implicit
in the linear terms. The nonlinear version uses a two semi-
steps method to ensure (∆t)2 accuracy.

3 Linear Results

The method is especially suitable for the study of LHD
configurations since they verify the assumptions, and the
dominant equilibrium modes are (m = 1, n = 0), and
(m = 2, n = 10). We start by studying the linear stability
properties of a sequence of zero net-current fixed bound-
ary equilibria with parameters Rax = 3.6 m, Bq = 100%,
γ = 1.25, and a pressure profile p ∼ 1 − ρ2. The profiles
of the rotational transform and curvature for the case with
β0 = 2×10−3 are shown in Fig. 1. The rotational transform
profile changes very slightly for the scan in β. The value
of the ideal Mercier stability criterion DI [6] as a function
of β0 at the position of the -ι = 1/2 and -ι = 1 rational sur-
faces is shown in Fig. 2. From the Mercier criterion we
expect that ideal modes localized at -ι = 1/2 are stable for
β0 < 6 × 10−3, and those localized at -ι = 1 are stable for
β0 < 0.02. The results of the linear growth rate and the
width of the dominant Fourier component (m = 2, n = 1)
of the n = 1 mode are shown in Fig. 3 for the ideal case and
the case with S = 107. In these calculations, we include
equilibrium components with n = 0, 10, 20, and, conse-
quently, dynamic components with n = 1, 9, 11, 19, 21.
The mode is ideally stable for β0 < 8 × 10−3, a value close
to the one given by the Mercier criterion. The resistive and
ideal modes are very localized for β0-values below 0.01,
and they are very similar for β0-values above 0.01.

The effect of the toroidal and helical couplings can
be seen in Fig. 4, where the dominant component of the
n = 1 family is shown for three different linear calcula-
tions: When only one dynamical component is included
(Cylinder), when only components with n = 1 are included

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.01 0.02 0.03 0.04 0.05 0.06

DI (iota=0.5)
DI (iota=1)

D
I

β0

Fig. 2 Values of the ideal Mercier criterion vs. β0 for the same
LHD configuration as in Fig. 1 at the radial position of
the -ι = 1/2 and -ι = 1 rational surfaces.
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Fig. 3 Ideal and resistive (S = 107) linear growth rate of the
n = 1 mode vs. β0 for the same LHD configuration as in
Fig. 1. The width of the dominant (m = 2, n = 1) Fourier
component is also represented

(Toroidal), and when components with n = 1, 9, 11 are in-
cluded (Helical). The equilibrium parameters of this con-
figuration are Rax = 3.6 m, Bq = 100%, γ = 1.25, Ip < 0,
and correspond to an experimental discharge with local-
ized oscillations at the (m = 2, n = 1) rational surface [7].
The Lundquist number S is 8 × 107, and the growth rate
increases by more than a factor of 2 from the cylindrical
to the full calculation. The dominant radial magnetic field
components are shown in Fig. 5. The importance of the
helical couplings for the magnetic terms is clear from the
Figure.

4 Nonlinear Results

We have followed the nonlinear evolution in the cylindri-
cal and toroidal limit. The value of S in these calculations
is reduced in such a way that the linear growth rate and
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Fig. 4 Comparison of the dominant component of linear eigen-
functions with no couplings, with toroidal couplings, and
with toroidal and helical couplings. The LHD configura-
tion is described in the text.
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Fig. 5 Dominant radial magnetic field components for the case
of Fig. 4 with all the couplings included.

width of the dominant component are similar to those of
the linear calculation including helical couplings. The cal-
culation for the cylindrical limit is single-helicity, that is,
only components with m/n = 2 are included. As can be
seen in Fig. 6, the nonlinear evolution for the cylindrical
case leads to saturation with bursting activity. The pres-
sure profile flattens around the -ι = 1/2 rational surface. For
the toroidal limit, the components with the same n are lin-
early coupled. The saturation level increases with respect
to the single-helicity case, and the profile of the root mean
squared value of the radial velocity widens with respect to
the linear eigenfunction, as can be seen in Fig. 7. In both
calculations, the (m = 2, n = 1) component dominates the
spectrum. The calculation of the nonlinear evolution in-
cluding linear helical couplings is under way.
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Fig. 6 Nonlinear evolution of the integral of the mean squared
value of Vρ for the case of Fig. 4.
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Fig. 7 Comparison of the time-averaged root mean squared
value of Vρ during the stationary phase for the nonlinear
cylindrical and toroidal cases. The linear eigenfunction
is also plotted.

5 Pressure-convection Limit

The natural generalization of the set of reduced equations
would be to write the velocity and magnetic field as

v =
√

g
[
R0∇ζ × ∇Φ + ∇θ × ∇ (ρΛ)

]
, (5)

B = R0∇ζ × ∇ψ + ∇θ × ∇ (ρχ) , (6)

where Φ and Λ are velocity stream-functions, and ψ and χ,
the perturbations of the poloidal and toroidal flux, respec-
tively. In this formulation, the incompressibility condi-
tion is approximate (higher order in the reduced equations),
∇ ·

(
v/√g

)
= 0. It corresponds to the pressure-convection

limit of Ref. [4]. To ascertain the validity of the reduced
set of equations for LHD, we have compared the results
of linear calculations with those obtained using the full
MHD equations in the pressure convection limit. The re-
sults practically do not change, and are consistent with the
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Fig. 8 Comparison of the dominant Fourier component of the
stream-function Φ obtained from the reduced and pres-
sure convection limit equations. The stream-function Λ
is also plotted using a different scale. The corresponding
LHD configuration is described in the text.

approximations made. This is illustrated in Fig. 8 where
we have plotted the dominant component (m = 1, n = 1)
obtained from both calculations for a configuration with
aspect ratio 8.3 and γ = 1.13.

6 Summary

We have derived a set of reduced equations without any as-
sumption on the number of field periods. For the calcula-
tion of the linear growth rates and nonlinear evolution, we
use Boozer coordinates. The linear results agree very well
with the ones obtained from the full MHD equations in
the pressure-convection limit. We have studied the nonlin-
ear evolution of the fluctuations in the cylindrical (single-
helicity) and toroidal (only n = 0 equilibrium modes) lim-
its. The saturated level widens with respect to the linear
eigenfunction. The calculation of the nonlinear evolution
including linear helical couplings is under way.
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