Proceedings of ITC/ISHW2007

Mercier Stability Improvement in Nonlinear Development
of LHD Plasma

Katsuji ICHIGUCHIV and Benjamin A. CARRERAS?

D National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
DBACV Solutions Inc., 110 Mohawk, Oak Ridge, Tennessee 37831, USA

(Received / Accepted )

Improvement of linear stability due to the nonlinear saturation of interchange modes in the increase of the
beta value is studied for the inward-shifted LHD plasma. For this study, a multi-scale numerical scheme is
utilized. In this scheme, the beta value is increased by adding small pressure increment to the background
pressure. We focus on the dependence of the Mercier stability on the profiles of the pressure increment. It is
obtained that the pressure profile approaches to the marginally stable profile when fixed profiles are employed for

the pressure increment.
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1. Introduction

In the LHD experiments, good confinement of the
plasma has been observed in the magnetic configuration
with the vacuum magnetic axis located R,, = 3.6m[1].
However, linear ideal interchange modes or Mercier modes
were predicted to be unstable in this configuration. In or-
der to investigate the stabilizing mechanism of the modes,
we developed a nonlinear MHD code, NORM, based on
the reduced MHD equations[2, 3]. In such investigation, it
is crucial to follow the continuous change of the pressure
profile in the increase of the beta value. For this purpose,
we have also developed a multi-scale simulation scheme[4]
by utilizing the NORM code and the VMEC code[5]. This
scheme treats both the equilibrium change in the long time
scale and the nonlinear dynamics of the instability in the
short time scale simultaneously.

In the multi-scale scheme, the beta value is increased
by adding a small increment of pressure to the background
pressure obtained as the results of the nonlinear dynam-
ics. In this case, there is a freedom in the determination
of the profile of the pressure increment. One choice for
the profile is to use the shape similar to the background
pressure profile obtained by the nonlinear evolution. In
the original study[4], we applied this pressure increment
to the inward shifted configuration of LHD. We found a
self-organization of the pressure profile which indicated a
stable path to high beta regime.

On the other hand, the profiles of the heat deposition
and the particle supply in experiments are usually fixed in
the increase of beta. In order to take this situation into
account, we consider to use a fixed profile for the incre-
ment of the pressure in the present study. We employ two
types of increment profile and compare the results with
that of the similar increment profile. Particularly, we fo-

author’s e-mail: ichiguch@nifs.ac.jp

cus on how the Mercier stability is improved by the self-
organization of the pressure profile due to the nonlinear
saturation of the interchange mode.

2. Multi-scale scheme with fixed pressure increment

The multi-scale scheme used in the present analysis
is explained in Ref.[4] precisely. Here we start from a
brief review of the multi-scale scheme, and then, explain
the choice of the pressure increment profile and the condi-
tions in the calculation.

The scheme consists of iterative calculations of non-
linear dynamics of the perturbations by the NORM code
and three-dimensional equilibrium by the VMEC code. In
this case, we divide the whole calculation time into short
time intervals. At ¢t = £, the beginning of an interval,
we calculate new equilibrium quantities at the higher beta
value with the VMEC code as the values of r = £*!, the
beginning of the next interval. In order to keep a smooth
continuity of the perturbation, we also divide the interval
between £ and #*! into some sub-intervals and employ a
linear interpolation of the equilibrium quantities by using
the equilibrium quantities of ¢ = ¢ and #*'. Then, the non-
linear dynamics is calculated for each sub-interval with the
interpolated equilibrium quantities with the NORM code.

When we calculate the equilibrium with the VMEC
code, we incorporate the pressure deformation due to the
nonlinear dynamics into the pressure profile. At¢ = ¢, the
total pressure is obtained as

Ply=(PY+ > P (1)
m#Qorn#0
where the tilde means a perturbed quantity and m and n

are the poloidal and the toroidal mode numbers. Here (P)’
denotes the average pressure which is given by

(PY' =P, + Py, 2)
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Fig. 1 Profiles of D; of the equilibrium for the pressure profile
of P,y = Po(1 - 021 = p®) in the inward-shifted LHD
plasma. Each symbol shows the value of D; at the posi-
tion of the resonant surface.

The average pressure includes the effect of the nonlinear
dynamics through P}, We calculate Pii! by using (P)’ as

Pl =(P)Y + AP™!, ©)

Here AP™! denotes the increment of the pressure, which
gives the increase of beta. In the original study[4], we em-
ployed a similar increment profile given by
i+1 _ pi
APi+l — <P>1B i B ) (4)
IB[

In the present study, we also consider two kinds of fixed
profile for the increment given by

AP* = Py(1 - pH)(1 - p*) Q)
and
AP = Pi(1 - p?)?, (6)

where p denotes the square-root of normalized toroidal
magnetic flux. The factor P; is adjusted so as to give a
given beta increment. Hereafter, we call the increments
given by (4)-(6) ‘similar increment’, ‘parabolic increment’
and ‘parabola-squared increment’, respectively.

We apply the scheme to the LHD plasma for the three
types of pressure increment under following numerical
conditions. We choose the configuration with the vacuum
magnetic axis located at R,, = 3.6m. We assume the re-
sistivity of § = 10°, where S is the magnetic Reynolds
number. We examine the evolution for 0.221% < (8) <
0.498%. One time interval is 250074, where 74 is Alfvén
time. We increase the beta value by A(8) = 0.0138% ev-
ery time interval. In the equilibrium calculation with the
VMEC code, we use the free boundary condition and the
no net-current condition. The time interval is divided into
10 sub-intervals for the linear interpolation.

To give the initial state, we start from the equilibrium
for Pey = Po(1 -1 -p®) at(B) = 0.221%. As is shown

log Ei
AN
o

—— AP : similar

-12- — AP : parabola )

—— AP : parabola-squared |
1 L 1 L Il

- n Il L L
]].'61000 20000 30000 40000 50000 60000
t (Ta)

Fig. 2 Time evolution of kinetic energy for each case of the pres-
sure increment.

in Fig.1, the core region of p < 0.44 of this equilibrium is
Mercier unstable. The absolute value of D;[6] decreases in
the p direction. We follow the nonlinear evolution of the in-
terchange mode for this equilibrium and obtain a saturation
att = 1000074. We employ the saturated state as the initial
state of the multi-scale calculation and set ¢t = 1000074 as
the initial time. Then, the beta value reaches (8) = 0.498%
at t = 600007,.
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Fig.3 Time evolution of average pressure in the case of the
parabolic increment.

3. Self-organization of pressure profile

We follow the evolution of the plasma for the three
types of increment profile and compare the resultant pres-
sure profile. Figure 2 shows the time evolution of the to-
tal kinetic energy for the three pressure increments. It is
common that the kinetic energy varies smoothly compared
with the time scale of sub-interval. This feature indicates
the multi-scale approach works well also in the fixed in-
crement cases. The evolution of the parabolic increment
case is close to that of the similar increment case, while
the evolution in the parabola-squared increment case is a
little more active.

Figure 3 shows the time evolution of the average pres-
sure in the case of the parabolic increment. As in the case
of the similar increment case[4], weak excitation and mild
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Fig. 4 Bird’s-eye view of total pressure at t=600007, for similar increment (left), parabolic increment (center) and parabola-squared

increment (right).

saturation of the interchange modes occur. The saturation
generates locally flat structure at the resonant surfaces in
the average pressure profile. Since the Mercier quantity
Dj is a decreasing function of p as shown in Fig.1, the flat
region is generated from inward to outward of the plasma
as the beta increases. Similar tendency is observed in the
parabola-squared increment case.

Figure 4 shows the bird’s-eye view of the total pres-
sure at the final time of + = 6000074. The deformation
of the total pressure is almost 6 independent for all incre-
ment cases. This implies that almost all of the resonant
interchange modes are saturated in a low level without any
significant excitation. In other words, in each increment
profile, the total plasma pressure evolves so that fluctua-
tions are suppressed in the increase of beta.

Remarkable difference between the three increment
profiles is seen in the average pressure profile at the final
state. Figure 5 shows the profile of the average pressure at
t = 600007,4. In the similar increment case, a global flat
structure is generated in the core region of p < 0.4. In the
parabolic increment case, the gradient of the pressure is re-
covered in the core region. In the parabola-squared incre-
ment case, the gradient becomes larger. These differences
are attributed to the gradient of the increment profile. In
any case of the increment, the pressure profile is flattened
in the core region once at low beta because (m,n)=(5,2)
and (7,3) modes are saturated in the region. In the similar
increment case, the average pressure is increased so that
the shape should be maintained. Therefore, the local flat
structure generated at low beta is kept even at high beta.

On the other hand, in the fixed increment cases, the
gradient of the increment profile is always added to the
total pressure. Therefore, the local flat structure of the av-
erage pressure tends to be smoothed out. Furthermore, the
resonant mode can be excited again at the flattened region
when the local pressure gradient enhanced by the incre-
ment exceeds a critical value. Since the driving force of
the mode should be quite weak, it saturates immediately
to generate a narrower flat region in the average pressure
profile. Thus, the local pressure gradient approaches to the
critical value through this process. The critical value can
be measured in terms of D; as explained in the next section.

In the parabolic increment case, the increment profile
is the same as the equilibrium profile used in the initial
state generation. Therefore, this process is limited in the
core region. On the other hand, the more steep gradient
is added in the parabola-squared increment case. The re-
gion of the process extends to the outer region including
the surfaces resonant with the (5,3) and the (3,2) modes.

4. Mercier stability improvement

The global feature of the D, profile is common in
all cases of the increment. Figure 1 (red line) shows the
D, profile for the equilibrium with the pressure profile of
P.y = Po(1 — p>)(1 — p®) at (B) = 0.444%. In this case,
the wide region of p < 0.60 is Mercier unstable. On the
other hand, D; has negative values around the resonant
surfaces as shown in Fig.6, which shows the D; profiles
at t = 6000074 ({B) = 0.498%) for the three cases of the
pressure increment. This comparison shows that the non-
linear saturation of the interchange mode stabilizes itself
through the local pressure flattening.

The difference in the structure of the pressure profile
is reflected to the precise structure of D; profile. In the
similar increment case, the improved values of D; are -
1.05, -0.49 and -0.21 at resonant surfaces with ¢ = 2/5,
3/7 and 1/2. There is a tendency that the absolute value
is a decreasing function of p;, where p; is the position
of the resonant surfaces. This tendency is related to the
Mercier stability at the initial equilibrium. The profile
of D; at (B) = 0.221% implies that the driving force of
the interchange mode is also the decreasing function of p.
Therefore, the local deformation at inner resonant surface
is larger than that at outer surface. Since such structure is
almost maintained during the beta increase, the resonant
surface is more stabilized beyond the marginal stability.

On the contrary, the absolute value of Dy is limited in
the level of -0.32 in the parabolic increment case. In this
case, even once the pressure profile is locally flattened, the
enhancement of the gradient of the pressure degrades the
Mercier stability. Therefore, the value of D; approaches
to a marginal value in the increase of beta. This tendency
is the same as in the case of the parabola-squared incre-
ment. In this case, the local improvement is observed also
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Fig.5 Average pressure profiles at # = 600007, .

around the surfaces of ¢ = 3/5 and 2/3. Including these
surfaces, the absolute value of Dy is limited in the level of
-0.29. The enhancement of the pressure gradient brought
by the parabola-squared increment is larger than that by
the parabolic increment case. Nevertheless, the maximum
value of Dy is in the similar level of D; ~ —0.3. This result
indicates that this value of D; corresponds to the marginal
pressure gradient independent of the increment profile, if a
fixed increment profile is employed. It can be concluded
that the local pressure gradient is determined in the in-
crease of beta so that D; at the resonant surface should
achieve to the marginal value.

5. Conclusions

The local improvement of the Mercier stability in the
nonlinear evolution of the interchange mode is studied in
the inward-shifted LHD plasma. The beta increase ef-
fect is incorporated by employing the multi-scale numer-
ical scheme. The plasma is Mercier unstable in a wide
region if there is no deformation of the pressure profile.
However, the nonlinear saturation of the interchange mode
locally improves the Mercier stability around the resonant
surface through the generation of the local flat structure in
the pressure profile.

The absolute value of Dj in the stabilized region de-
pends on the pressure increment profile. If we use the sim-
ilar increment profile, the absolute value of negative D;
becomes much larger in the vicinity of the axis than that
in the outer region. This is attributed to that the locally flat
structure in the pressure profile is maintained in the beta in-
crease. On the other hand, if we use a parabolic increment
profile, the reduction of the pressure gradient is compen-
sated by the increment pressure. Therefore, the absolute
values of Dj at all resonant surfaces are in a small level.
In the case of the parabola-squared increment profile, the
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Fig. 6 Profiles of D; at t = 600007, .

improvement of the Mercier stability extends to the outer
rational surfaces. Even in this case, the absolute values of
Dy are also limited in a small level including the outer ra-
tional surfaces. The level is almost the same as that in the
parabolic increment case. These results indicates that the
enhancement and the reduction of the pressure gradient is
balanced so as to give a critical pressure gradient. The for-
mer is due to adding the increment pressure and the latter
is due to the nonlinear saturation of the mode. In other
words, in the case of the fixed profile of the pressure in-
crement, the plasma is self-organized so that the pressure
profile approaches to the marginally stable profile at the
resonant surfaces with respect to the Mercier stability.

As a future plan, we consider to include an effect of
the equilibrium diffusion. In this case, we can expect that
the positive D; values in the regions between the resonant
surfaces also approach to marginal value.
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