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Direct numerical simulations of compressible, nonlinear magnetohydrodynamic equations in the fully three-
dimensional geometry of the large helical device are carried out to study the linear and nonlinear growth of the
pressure-driven instability. Two parameter sets are adopted in the simulation study. One parameter set provides
small dissipative coefficients so that the simulation results can be compared to the ideal linear stability analysis.
By the use of this parameter set, the growth rates in the linear stage of our simulation coincides with the ideal
linear growth rates. Another parameter set is provided to study nonlinear evolutions. Excitations of flows parallel
to the magnetic field, its role to the nonlinear saturations are studied.

Keywords: direct numerical simulation, MHD instability

DOI: 10.1585/pfr.1.001

1 Introduction

In researches of magnetic confinement devices such as
the Large Helical Device (LHD), Magnetohydrodynam-
ics (MHD) instability is one of the key issues to under-
stand plasma behaviors in the devices. Aiming to clarify
the physics of the MHD activities observed in the LHD
experiments[1], many linear analysis and nonlinear simu-
lations have been carried out [2, 3, 4, 5, 6]. Because of
the short wave instability nature of the the pressure driven
instability, small scales must be sufficiently resolved in a
numerical computation. In the numerical study of an insta-
bility, the linear growth rate is an important index. In lin-
ear analysis of an ideal MHD system, high mode behaviors
can be well predicted. However, in numerical simulations,
non-ideal (dissipative) MHD equations are studied because
the dissipation is indispensable to avoid numerical instabil-
ity. Since the resolution available in a numerical simulation
are restricted, the dissipative coefficients in simulations are
often far larger than the values expected to compare numer-
ical results to experimental results. Typically, the adoption
of the large coefficients brings about unfavorable damping
of high modes.

In our recent work on nonlinear MHD simulations of
LHD by the use of the MHD In Non-Orthogonal System
(MINOS) code[3], the growth rate of the lowest mode co-
incides well with the linear ones obtained by the CAS3D
code.[4] However, the growth rates of moderate and high
modes in the simulation are apparently suppressed by the
viscosity and the coincidence is lost as the mode num-
ber becomes larger. In this paper, the number of the grid
points of our simulations is increased to study the mod-
erate modes behaviors. Numerical simulations are car-
ried out for the equilibrium magnetic field with the vac-
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uum magnetic axis position 3.6m and the pressure pro-
file p(ψ) = (1 − ψ2) where the ψ is the toroidal magnetic
flux. Growth of the moderate mode numbers, generation
of toroidal flows and nonlinear saturations of the instabil-
ity are discussed. In this articles, two parameter sets are
adopted: (A) the isotropic heat conductivity κ = 1 × 10−6

(that is, the parallel heat conductivity κ// and the per-
pendicular heat conductivity κ⊥ is identical), the resistiv-
ity η = 1 × 10−6, the viscosity µ = 1 × 10−6, and (B)
κ// = 1× 10−2 , κ⊥ = 1 × 10−6, η = 1 × 10−6, µ = 1 × 10−4.
These parameters are already normalized by some typical
quantities (see Ref.[5]) and hence the reciprocal of the dis-
sipative number can be considered as some similarity pa-
rameters such as the Reynolds number Re = 1/µ and the
Lundquist number S = 1/η. The number of grid points
are 193 × 193 on a poloidal cross-section and 640 in the
toroidal direction. The number of grid points is doubled in
the two directions of a poloidal cross-section compared to
our earlier works.[5, 6] The parameter set (A) provides a
high Reynolds number and the behaviors of the solutions
may be easily compared to an ideal linear analysis. Though
the simulation with this parameter set cannot be completed
because the numerical resolution (number of grid points)
is not sufficient for such a high Reynolds number flow, it
serves to study linear stages. The parameter set (B) pro-
vides the moderate Reynolds number and nonlinear satu-
ration within the numerical resolution, although the linear
stage is influenced by the dissipative coefficients µ and κ//.
Thus we first study the former case, parameter set (A) so
that the linear growth are clearly seen. Then the nonlinear
growth is studied for the parameter set (B).
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2 Comparison to linear ideal analysis

Here we study the growth of Fourier amplitudes of the ve-
locity vector. The velocity vector field V is decomposed
into the normal (V∇ψ), the parallel (Vb) and the binormal
components (V∇ψ×b) Then each of the three vector compo-
nents are decomposed into the Fourier modes m and n on
the Boozer coordinate. By the use of the Fourier coeffi-
cient Vα,mn(ψ), the power spectrum Aα,n =

∑
m

∫ ψ
V2

i,mndψ
is defined.[5] In Fig.1(a), the time evolution of the volume-
integrated amplitudes of the three vector components of
the velocity vector field are shown for the parameter set
(A). Hereafter, the abscissa t is normalized by the toroidal
Alfven time τA whenever a time series is plotted. In
Fig.1(b), the time evolutions of Aα,n are shown. Here we
recall that a single Fourier mode on the Boozer coordinate
is not the linear eigen-function of the MHD equations by
itself. A linear eigen-function consists of multiple Fourier
modes, as are shown by Nakajima[8]. However, as is
shown in the reference, the toroidal coupling in the LHD is
so weak that the poloidal Fourier wavenumber n can be ap-
proximately recognized as a good quantum number. Based
on this understanding, we see only the n-wavenumber de-
pendence of the Fourier amplitude growth by summing m
over all wavenumbers. Fig.1(c) is the magnification of the
linear stage of this simulation. Observe in Figs.1(b) and
(c) that some of the Fourier amplitudes achieve exponen-
tial growth while some show further acceleration. Because
of the high Reynolds number 1/µ = 106, the computation
is terminated in the midst of the growth. However, obser-
vations of the growth of the energy faster than an exponen-
tial growth in Figs.1(a) and (b) reveal that the final time 55
is already in the nonlinear stage of the evolution. We also
find that the growth of the parallel energy coincides with
those of the other two components only in short period at
40 < t < 45, or rather faster than them. As is commented in
the above, the final period of this simulation is influenced
by nonlinear coupling in the MHD equations. Deviations
of the parallel energy growth from the other two compo-
nents should be attributed to the nonlinear growth. Based
on studies of the growth of separate m/n Fourier modes
( figures of which are omitted here), the linear growth is
considered in between t ' 30 and t ' 40.

In Fig.2, the growth rates obtained in this simulation
are compared to the ideal linear analysis. The CAS3D3[?]
computation provides estimates of the growth rates. The
growth rates for n ≤ 4 in the simulation shows reasonable
coincidence to the CAS3D computation. Compared to our
previous work[5], the number of grid points are doubled
into the two directions of a poloidal cross-section. Al-
though the parameters are the same as the ones in the previ-
ous work, the artificial dissipations due to the truncation is
drastically decreased thanks to the high resolution proper-
ties of the compact scheme.[10] Nonetheless, we still have
to recognize that the moderate Fourier modes n > 7 is un-
der the influence of the dissipative coefficients. We also

note that µ = 1 × 10−6 is the minimum value which makes
sense as a physical viscosity for the current numerical res-
olution. Although we could reduce the viscosity below
1 × 10−6, the growth of unstable modes becomes rather
insensitive to the change of µ, suggesting that the numeri-
cal viscosity associated with the truncation errors become
gradually dominant.

3 Nonlinear evolution

Next, the nonlinear evolutions of the instability is studied
by the simulation with the parameter set (B). In Fig.3, the
time evolution of the volume-integrated amplitudes of the
three vector components of the velocity vector field are
shown. The growth rate of the parallel flow component is
the same as the other two component, making a difference
to the observation in Fig.Fig:Run553total. It shows that the
three components obey to the same kind of the instability.
Among the three components of the velocity vector, the
parallel component becomes dominant finally even though
it is initially much smaller than the other two components.

Fourier amplitudes for some toroidal Fourier modes n
of (a) the normal, (b) the binormal and (c) the parallel com-
ponents of the velocity vector are shown in Figs.4(a)-(c),
respectively. In Figs.4(a) and (b), Fourier amplitudes asso-
ciated with the odd toroidal numbers n = 1, 3, 5, 7, 9, and
11 grows the fastest. The growth of the Fourier modes are
mostly contributed by the Fourier mode set m/n associated
with the ι/2π = 0.5 rational surface. Growth rates of these
Fourier modes are almost identical. Although the separa-
tion between odd and even wavenumbers are not clarified
yet, the exponential growth of the even toroidal numbers
are considered as a consequence of nonlinear couplings of
the odd wavenumbers rather than their own linear insta-
bility, since the growth rates of these even numbers are as
large as the twice of the growth rates of the odd numbers.
Among the four dissipative coefficients, the parallel heat
conductivity κ is considered as the most influencing one.
For example, once the unstable Fourier modes which are
resonant to the ι/2π = 0.5 rational surface grow, the pres-
sure distribution is modified because of the large κ//. Since
eigen-functions of low n modes cover wide are across the
flux surfaces, the κ// effect can also modify the pressure
profile in wide area. In Fig.4(c) the time evolutions of the
Fourier amplitudes of the parallel velocity component are
shown. In comparison to Figs.4(a) and (b) in which the
toroidal modes n = 1, 3 and 5 have almost the same am-
plitudes, it is clearly seen that the n = 1 Fourier mode
achieves the largest amplitude. Furthermore, there is no
clear distinction between even and odd mode numbers.

In Fig.5, the pressure isosurfaces and contours on a
poloidal cross-sections are shown at t = 110τA (upper)
and 150τA (lower). At t ' 110τA, many of the Fourier
modes are saturated or going to be saturated. The contour
lines on the poloidal cross-section in Fig.5(a) exhibits clear
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mushroom-like structures. The mushroom-like structures
have been repeatedly reported in our earlier works.[4, 5, 6]
While the structures in the earliest work consist mainly
of m/n = 2/1 Fourier modes, the structure in this arti-
cle consist of many more Fourier modes which are reso-
nant to the ι/2π = 0.5 surface. The overlapping of the
resonant modes provides quite large pressure deformation.
Consequently, the contour plots of the pressure (and there-
fore the Poincare plots of the magnetic field lines, which
are not shown here, too) become quite chaotic after the
nonlinear saturations. However, at t = 150τA, the pres-
sure contour associate with the outermost closed surface is
not deformed very much through the linear and nonlinear
evolution, suggesting that the confinement is not critically
damaged in spite of the strong instability. Furthermore,
contour lines tend to form the concentric profiles again,
showing a possibility of organizing relatively well confined
state again.

4 Concluding Remarks

Direct numerical simulation study is conducted to study
linear and nonlinear evolution of the instability in LHD.
A simulation with relatively small dissipative coefficients
shows good coincidence of the linear growth rates with the
ideal analysis. In nonlinear simulations, the parallel flow
becomes dominant after the nonlinear saturation. It is note-
worthy that the parallel flow tends to grow much larger
than the other two components of the velocity vector in the
simulation with smaller dissipative coefficients than in the
one with larger coefficients. It suggests that the parallel
flow dominance is much stronger in simulations with very
small dissipative coefficients. The numerical simulations
in this work was carried out on NEC SX-7 “Plasma Sim-
ulator” in National Institute for Fusion Science under the
NIFS program NIFS06KTA033.
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Fig. 1 Time evolutions of (1)the volume-integrated energy of
the three components of the velocity vector, (b)the
Fourier amplitudes of the normal velocity component
A∇φ,n, and (c) an magnification of (b), in the parameter
set (A) simulation.
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Fig. 2 Comparison of the growth rates of the Fourier amplitudes
in the parameter set (A) simulation to those of the CAS3D
computations.
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Fig. 3 Time evolutions of the Fourier amplitudes of the normal
velocity component in the parameter set (B) simulation.
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Fig. 4 Time evolutions of the Fourier amplitudes of (a)the nor-
mal, (b) the binormal and (c) the parallel velocity compo-
nents in the parameter set (B) simulation.

Fig. 5 Isosurfaces and contours of the pressure on a vertically-
elongated poloidal cross-sections at t = 110τA (upper)
and 150τA (lower). At the midst of the two times, the
contour lines of the pressure are much more chaotic. Af-
ter the destruction of the closed contour lines, concentric
profiles of the pressure tend to be recovered.


