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Non-ideal MHD ballooning modes in three-dimensional
configurations
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A linear stability theory of non-ideal MHD ballooning modesinvestigated using a two fluid model for
arbitrary three-dimensional electron-ion plasmas. Rigsignertia ballooning mode (RIBM) eigenvalues and
eigenfunctions are calculated for a variety of equilibrialiding axisymmetric shifted circular geomets/~ «
model) and configurations of interest to the Helically SyrnmeStellarator (HSX). For parameters of interest to
HSX, characteristic growth rates exceed the electronsiotiifrequency. In this regime, electron inerttéeets
dominate plasma resistivity and produce an instability sehgrowth rate scales with the electromagnetic skin
depth. Attempts to generalize previous analytic calcoteti[1] of RBM stability using a two scale analysis on
s— «a equilibria to more general 3-D equilibria will be addressed
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Unstable resistive ballooning modes (RBM) may play
an important role in producing edge plasma fluctuations
and anomalous transport in tokamaks and stellarators. In
this work, the stability criterion for non-ideal MHD bal-
looning modes is derived for arbitrary three-dimensignall
ideal MHD stable electron-ion plasmas. In the presence of
non-ideal &ects, ballooning instabilities can be produced
at plasmas levels below the criticgB for ideal ballooning
stability. Electron inertia, diamagneti¢tects, parallel ion
dynamics, transverse particleffdision and perpendicular
viscous stress terms are included in the calculations. Tem-
perature perturbations and equilibrium temperature gradi
ents are ignored for simplicity. For parameters of interest
to the Helically Symmetric Experiment (HSX), character-
istic growth rates exceed the electron collision frequency
In this regime, electron inertidfects can dominate plasma
resistivity and produce an instability whose growth rate
scales with the electromagnetic skin depth.

In this work, a unified theory of RBM and inertial
ballooning modes is developed where both tlteats of
ideal MHD free energy (as measured by the asymptotic
matching parametet’) and geodesic curvature drives in
the non-ideal layer are included in the dispersion rela-
tion. This theory may explain thig, < 1/cmfluctuations

and the anomalous plasma transport observed in HSX near ¢

r/a = 0.7 whereTe = 100V Resistive-inertia balloon-
ing mode (RIBM) eigenvalues and eigenfunctions are nu-
merically calculated for a variety of equilibria including
axisymmetric shifted circular geometrg{ @ model) and
configurations of interest to the HSX.

The organization of this paper is as follows. In section
I, linearized ballooning equations are derived from Ohm’s
law, vorticity, continuity and parallel momentum equa-
tions. In section Il, RIMHD modes are numerically calcu-
lated for S — a equilibria and for quasihelically symmet-
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ric stellarator (QHS) equilibria in the electrostatic Itmi
The results for QHS are compared and contrasted with a
magnetic configuration that spoils the helical symmetry by
adding mirror terms to the magnetic spectrum. In section
I, the shear Alf\en and drift acoustic equations in general
3-D geometry are presented in Hamada coordinates using
a multiple length scale analysis. Section IV is devoted to
study of these equations using a multiple length scale ex-
pansion technique and derivation of the dispersion reiatio

In section V, we summarize the results.

|. Drift ballooning equations

The reduced Braginskii fluid equations for a four-field
model of drift resistive ballooning modes are used. The
equations for generalized Ohm’s law, vorticity, electron
continuity and total parallel momentum can take the fol-
lowing linearized form in am ~ ws ~ w.j ~ w, ordering

(@ = ween+ wH +ic?Keny /4n) ¥ = cdkg (- T), @)

wk2 p? (ﬁ+ Tﬁ;) = wn—iu K p? (ﬁ+ ‘r&;) + %k” (kﬁpf@) ,(2)
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r‘|_w*en6 = Wee (6 —ﬁ)+C5k||V||+

(@ + W) V) + Ween? = Ck — gz, K2V,

4

whereH = Kki62, 63 = ¢%/wh,, is the electromagnetic
skin depth,w3, = 47n€’/me, is the electron plasma fre-
quency,u, = 0.3vp?, is the classical perpendicular vis-
cosity,pi = Wi/ wei, is the ion Larmor radiusg = +T;/m,

is the ion thermal velocityw, = eB/m, is the ion
cyclotron frequencyr = T¢/T;, is the electron to ion
temperature ratioy; = B?/4rnm, is the Alfvén speed,

n andn, are the longitudinal and transverse Spitzer re-

sistivities. ¥ = ecA/cTe, ® = ep/Te, Vi = Vj/Cs,
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N = Nn/n, are the dimensionless perturbed parallel com-
ponent of vector potential, electrostatic potential, paka
ion flow and density, respectively. Al0, = w,i + Wye,
wherew,; = (ZCTJ-/eB)k @ X K Cs = (Te+ Ti/m)Y?,
wien = — (CTe/€B Kk -€ x VInn, are the curvature drift fre-
quency, sound speed and the diamagnetic drift frequency.
The resistive-inertia MHD incompressible ballooning

equation for high frequencydf| > w.e, wke) lONg wave-
length (Gp? < 1)limit can be written as follows:

2 d ki © +(a)/k? +T'wkew*e

Wi = )@ = 0,(5)
"do | w+ (wCPK2 [ Wi + iw,)KE de T wkip?

where wa = Va/gR is the Alfven frequency,q is the
safety factor andR is the major radius,e, = L,/R,
with L, = (d.Inn)7%, is the density gradient scale
length, k| = —i(1/qRd/dd, k. = (nea/r)k. (6). w, =

(c2n||/47r)(n¢q/r)2, is the resistive frequency and
1 + 1/7. Note that in Eq. (5) the electron inertia term,
wC?k3 /w3, is present. The incompressible ideal MHD
(IMHD) ballooning equation can be retained by neglect-

ing electron inertia and resistivity.

[I. Numerical results

Equation (5) is solved numerically using a standard root
finding algorithm for axisymmetric shifted-circle equiib

rium (in Figures 1 and 2) and for three dimensional equi-
libria of relevance to HSX (Figure 3). For all cases, the

parameters used are relevant to HSX edge plasmas, as in- 9

dicated in the caption of Fig.1.

Figure 1 shows the normalized growth ragé(,) as a
function of the normalized pressure gradient (the balloon-
ing parameter). In this scan, tokamak-like global mag-
netic shears™= 0.1 is chosen to show the ideal MHD
unstable region. HSX has reverse shear and ideal MHD
instabilities for which the mode amplitude does not vary
along the field line (i.e k;=0) are stable for the parameters
studied. The electron inertia and resistivity induce an in-
stability in the ideal MHD stable regimes. The modes are
purely growingw, = 0. The electron inertia modes & 0)
are found to be more important than the resistive modes
due to their existence in the first ideal stability region for
HSX relevant parameters. Note that these modes persist
in the ideal MHD second stable regime. Both the electron
inertia and resistive instabilities are characterizedtoad
eigenfunctions in the ballooning space as shown in Fig. 2.
Moreover, the qualitative nature of the eigenfunctions is
insensitive to whether electron inertia is present.

Equation (5) is solved numerically in the electro-
static limit using three dimensional equilibria for a quasi
helically symmetric (QHS) stellarator and a configuration
whose symmetry is spoiled (Mirror) by the presence of
magnetic mirror contributions to the magnetic spectrum.

Figure 3 is a plot of the growth ratg normalized to
the R/cs as a function of K, p)>. We perform this calcula-
tion for the field line that intersects the locatiésn = 0,
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Fig. 1 The normalized growth ratg (wa) as a function of for
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Eigenfunction of RIBM as a function @ffor « = 0.3.
The other parameters are the same as used in figure 1.

o = 0 on the normalized magnetic surfase= 0.8980.
This point is thought to be the most unstable choice since
the local shear is small, the local value of the geodesic cur-
vature is zero and the destabilizing influence of the normal
curvature is strongest. The highly resistive{ 0, v # 0)
growth rate in QHS is compared with the growth rate in
the Mirror case. In both configurations the magnitude of
the linear growth rates are found to be comparable, crudely
indicating the same level of anomalous flux. The common
stability properties are due to a similar structure of the cu
vature and the local magnetic shear.

lll. Shear-Alfvén and Drift acoustic
equation in 3-D geometry

The general solution of Egs. (1)-(4) can be written as a cou-
pled system of a two second ordeffdrential equations,
the shear-Alfén equation and the drift-acoustic equation:

d (@ — wne) K2dU/dy 8P (K, + qyK,)
dy | B? (w — wne + (w2 + in*) a2K?) x*
2
X(U+V) = - (w+ i, 82K?) [(@ — wn) U = (1+ 1) wniV],

2\ 2
X

(6)
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Fig. 3 Normalized growth rateRy/Cs) of the resistive-inertia
ballooning modes in the electrostatic limit as a function
of (k.p)? for QHS and Mirror cases faa= 0.898Q 7 = 1,
Rv/2cs = 0.42, &, = 0.07 andd, = 0, ¢, = O field line.

and
d (y2dv) (@—wne) (a) + 4i,ula2K2) ~
dy |\ B? dy) c -
w + dip, &2K2 TwaPK2p2
[_Q (Zan (KV + q'yx¢) + w—pl)

(wég + in*) (a) + i,uiasz) a2K?
+ v

[(w = wn) U = (1+7) wniV]

W — Wne

. [(wég + iﬁ*) 8na’p (KV + qykw) 0 in* (u) + 4i,uLa2K2) a’k?
W~ Wne x? i Vi
x (U +V) + xrd In (e + 4ip, a°K2)
B2 dy +
(wég + in*) a?k? du  dv
[w—w*e+(w6§+in*)a2K2d_y+d_y ’ )

whereK? = |Vg|? - 2qyVe - Vv + g2 V2, a = dS/dy,

is the "mode number” that describes the component of
the k vector that is perpendicular to the magnetic field
and lies within the magnetic surface, = « - V8 x Vo,

Ky, = k- Vv XVl (=x'/2p)B-Vo, is the geodesic
curvature andr = j - B/B?. The coordinatey is defined

as labeling points along the magnetic field and as such
B-V = x'(d/dy). Dot over quantities indicate derivatives
with respect to the volume.

IV. Analysis of Resistive Ballooning
Mode equations

time.

(8)

w
e=(—)P<«1,
WA
In the following, somewhat general ordering is used

9)

and viscosity is comparable to resistivity, = €wa.
Equations (6,7) can be solved using a two variable expan-
sion procedure. We takg andz = ey as two diferent
length scales and make the ansatz

w"’ws""wnj"’EwA

U (y) = U (Y, 2) + €U1 (Y, 2) + €Uz (Y, 2) + .... (10)

Uily+N,2 =Ui(y,2, 1i=012,.. (1))
The function U is periodic iry with period N whereas the
variablez accounts for the long envelope of the eigenfunc-
tion along the magnetic field line. Fdy| ~ 1 an ideal
MHD region can be identified where resistivity, electron
inertia and viscosity can be neglected. The Shear&ufv

equations in the zeroth order ércan be written as
. 47
x*

K2 dUg
d

d 1KZdUo

dy| B?2 dy
At large |y|, the solution of the Shear Alén equation
yields the following asymptotic solution

(ZD‘KV - q‘x'zyd—z) Uo=0. (12)

U=ailyi®+aly s, Iyl — oo, (13)
where
1 [1 12
s=-3 21+H2—H—DR] . (14)

The quantitiedH and Dg are dependent upon the equilib-
rium and are defined as [3]

_ A%(B?/ "V\V|2> (oB?) _ (oB?/ ’/V\Vr)

H= , (15

qx? (B?) (B?2/ "V\Vr) (13)

Dr=F +E +H? (16)
2/R2/ o 2 2/ o 2 2

A2(B /|Vv| Y| g2p2 (0B /'Vv| 2
= 2,4 — 2/ — TP <§ (17)

a‘x |Vv’ (B?/ )Vv‘ )
AR e

For this analysis, thus, ideal stability is assumed; the

We can make analytic progress to understand the structure \Mercier stability criterion is satisfied

of non-ideal MHD ballooning modes by using a multiple
scale analysis. Our calculation generalizes the work of
Hastie et al [1] to three-dimensional equilibria. A small
parameteg can be defined that accounts for the disparate
timescales associated with currerffa$ion and the Alfen

-D, =

1 1
Z—(E+F+H)= Z+H2—H—DRgO.(19)

In the outer region solution along field lingg & €2), re-
sistivity, inertia and viscosity must be taken into account
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We solve Eq. (6) order by order. At second order a solu-
bility condition for U, is derived that yields a tferential
equation folJ, that depends upon integralsdf andV;

2
<ﬁq‘222'Vv| 6U1>

— 1 2
aus\ [0 TE o,
dz B2A;  dy |

0z B?A; 0z

— 2
Vv

BZ| (D+iﬁq'222 ‘?v‘z»

) e

—q'zzz(a—ani)uod
AR (o (30,
v e -an(() {5 -

—~ 2
whereA; = 1+ q 2Zwr | VV| . One special limit that
can be pursued analytically is the electrostatic limit. In

. =2
this caseq ? Zoir ' Vv' > 1,andV; =0,

dZUO . L2 <0’Bz>
Gz TW 2pxy) +dx <U>_W Uo
2 —~ |2
oB? Vv
= -W; <0'282>_ <<Bz>> —W3<—' B'Z > ZZUo, (21)
where
A . ) q42X.4 o q2<B2>
W = ()7)‘”IR<B >, W, = @Wl, W; = @ (0—wpni) W
and
2 wolee +i w —
A=47@/Q)° Wr= ———, w=——, V=-V
W — W e €wa q

The condition for existence of a solution is
2p (k) + g% ((a-) - <o-BZ> / <BZ>) > 0. The solutions
(21) give the following eigenvalue expression

2 62 i . = 2,2
(o= nd oo = <|< ‘;;;;) (S [
<0’BZ>2 <Bz> ! 2 <G—Bz> 2
& + (q‘2)(‘4(2n+1)2) X (2P &) + qx (<O'>—E) .

(22)

Solutions to the the above equation lead to an infinite se-
quence of modes with growth rate scaling as for the resis-
tive ballooning modey ~ w,*/® or for the electron inertia
ballooning modey ~ 6.

In the limit w > ws, Vo = V1 = 0, sound wave propa-
gation is neglected and the visco-resistive-inertia loaiio
ing mode equation can be found

d X% 0Ug H(l—H)U H (1 + H) X2
X1+ X2 X (1+X2)? (1+ X2)?
+DRrUp — Q1UoX2 — QUoX* = 0, (23)

In the limit of zero viscosity ¢, = 0), Q> = 0 in Eq.
(23), and the drift resistive ballooning equation is recov-

corrections evident in the cficientQ, (defined in Eq.(25)
below). A valid solution can be constructed in the ideal and
resistive region by matching the ideal solutionffoF— oo

to the resistive solution fgK| — 0. We obtain the general
dispersion relationA = A’, whereA’ can be calculated by
using the conventional definition as the ratio of €méents

of the large and small solutions of the asymptotic form of
the ideal solution, which in this case defined\vas a,/ay,

and

4y52°QE 294 172+

A% s mpT2-9
r'[(1/4) (QY? + 3 - 25— Dg/ Q2
X (Sl 1/2 - 1/2)]’ (24)
(/4 (Q% + 1+ 2s- Dr, Q)]
where
_ w(w— wn) (W = wne) B q? <Bz> Wi (w(sz + ia),,)
Q= % . Qo= AN, M . (25)
Z? w?
Xt = ﬁ’ Yo = AMw(aj—wm)’
B2 o 1 <0'BZ>2
wﬂﬁ?>ww/ﬂ+ﬁk&ﬂ‘<%

andT is the gamma function. For the special case wbgn- 0,
we also reproduce the stability criterion derived in Ref. [2] with
electron inertia and diamagnetic corrections:

(ui (wéz + iw,l) 4
ANM q* (&%)

2
1
-z 2
(2+s+ n)

(W — wne) (W — wni) = =

V. Summary

1/2

(26)

A unified theory of resistive and electron inertia ballooning
modes (RIBM) has been developed. The RIBM is characterized
by broad eigenfunctions in ballooning space. In the absence of
drift effects, the modes are purely growing and persist in regimes
where ideal MHD ballooning modes are stable. For parameters of
interest to HSX, electron inertigfects are more important than
plasma resistivity; electron inertia modes are the most unstable
and have growth rates that scale with the electron skin depth,
y ~ 6. The magnitude of the linear growth rates are not sensi-
tive to the magnetic configuration in HSX plasmas. This would
indicate a comparable level of anomalous transport in QHS and
mirror configurations; this is consistent with observations in the
HSX edge region.

Acknowledgments

This research was supported by the U.S. DoE under Grant Nos.
DE-FG02-99E54546 and DE-FG02-86ER53218.

[1] R. H. Hastie, J. J. Ramos and F. Porcelli, Phys. Plastfas
4405 (2003).

[2] D. Correa-Restrepo, Z. Naturforsch.3X,848 (1982).

ered. This equation has the same form as the resistive [3] A. H. Glasser, J. M. Greene and J. L. Johnson, Phys. of Flu-

MHD case covered in Ref. [2] except for the diamagnetic

ids 18, 875 (1975).



