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Non-ideal MHD ballooning modes in three-dimensional
configurations
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A linear stability theory of non-ideal MHD ballooning modesis investigated using a two fluid model for
arbitrary three-dimensional electron-ion plasmas. Resistive-inertia ballooning mode (RIBM) eigenvalues and
eigenfunctions are calculated for a variety of equilibria including axisymmetric shifted circular geometry (s− α
model) and configurations of interest to the Helically Symmetric Stellarator (HSX). For parameters of interest to
HSX, characteristic growth rates exceed the electron collision frequency. In this regime, electron inertia effects
dominate plasma resistivity and produce an instability whose growth rate scales with the electromagnetic skin
depth. Attempts to generalize previous analytic calculations [1] of RBM stability using a two scale analysis on
s− α equilibria to more general 3-D equilibria will be addressed.
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Unstable resistive ballooning modes (RBM) may play
an important role in producing edge plasma fluctuations
and anomalous transport in tokamaks and stellarators. In
this work, the stability criterion for non-ideal MHD bal-
looning modes is derived for arbitrary three-dimensionally
ideal MHD stable electron-ion plasmas. In the presence of
non-ideal effects, ballooning instabilities can be produced
at plasmaβ levels below the criticalβ for ideal ballooning
stability. Electron inertia, diamagnetic effects, parallel ion
dynamics, transverse particle diffusion and perpendicular
viscous stress terms are included in the calculations. Tem-
perature perturbations and equilibrium temperature gradi-
ents are ignored for simplicity. For parameters of interest
to the Helically Symmetric Experiment (HSX), character-
istic growth rates exceed the electron collision frequency.
In this regime, electron inertia effects can dominate plasma
resistivity and produce an instability whose growth rate
scales with the electromagnetic skin depth.

In this work, a unified theory of RBM and inertial
ballooning modes is developed where both the effects of
ideal MHD free energy (as measured by the asymptotic
matching parameter∆′) and geodesic curvature drives in
the non-ideal layer are included in the dispersion rela-
tion. This theory may explain theky ≤ 1/cm fluctuations
and the anomalous plasma transport observed in HSX near
r/a = 0.7 whereTe = 100eV. Resistive-inertia balloon-
ing mode (RIBM) eigenvalues and eigenfunctions are nu-
merically calculated for a variety of equilibria including
axisymmetric shifted circular geometry (s− α model) and
configurations of interest to the HSX.

The organization of this paper is as follows. In section
I, linearized ballooning equations are derived from Ohm’s
law, vorticity, continuity and parallel momentum equa-
tions. In section II, RIMHD modes are numerically calcu-
lated for ŝ− α equilibria and for quasihelically symmet-

author’s e-mail: rafiq@engr.wisc.edu

ric stellarator (QHS) equilibria in the electrostatic limit.
The results for QHS are compared and contrasted with a
magnetic configuration that spoils the helical symmetry by
adding mirror terms to the magnetic spectrum. In section
III, the shear Alfv́en and drift acoustic equations in general
3-D geometry are presented in Hamada coordinates using
a multiple length scale analysis. Section IV is devoted to
study of these equations using a multiple length scale ex-
pansion technique and derivation of the dispersion relation.
In section V, we summarize the results.

I. Drift ballooning equations

The reduced Braginskii fluid equations for a four-field
model of drift resistive ballooning modes are used. The
equations for generalized Ohm’s law, vorticity, electron
continuity and total parallel momentum can take the fol-
lowing linearized form in anω ∼ ωs ∼ ω∗ j ∼ ωη ordering
(
ω − ω∗en+ ωH + ic2k2

⊥η‖/4π
)
Ψ̂ = csk‖

(
Φ̂ − n̂

)
, (1)

ωk2
⊥ρ

2
i

(
n̂+ τΦ̂

)
= ωκn̂− iµ⊥k4

⊥ρ
2
i

(
n̂+ τΦ̂

)
+
τv2

A

cs
k‖

(
k2
⊥ρ

2
i Ψ̂

)
,(2)

ωn̂−ω∗enΦ̂ = ωκe
(
Φ̂ − n̂

)
+csk‖̂v‖+

iη⊥c2k2
⊥

4π

c2
s

v2
A

n̂−
τv2

A

cs
k‖

(
k2
⊥ρ

2
i Ψ̂

)
, (3)

(ω + ωκi) v̂‖ + ω∗enΨ̂ = csk‖̂n− 4iµ⊥k2
⊥v̂‖, (4)

where H = k2
⊥δ

2
e, δ

2
e = c2/ω2

pe, is the electromagnetic
skin depth,ω2

pe = 4πne2/me, is the electron plasma fre-
quency,µ⊥ = 0.3νiρ2

i , is the classical perpendicular vis-
cosity,ρi = vti/ωci, is the ion Larmor radius,vti =

√
Ti/mi ,

is the ion thermal velocity,ωci = eB/mic, is the ion
cyclotron frequency,τ = Te/Ti , is the electron to ion
temperature ratio,v2

A = B2/4πnmi , is the Alfvén speed,
η‖ andη⊥ are the longitudinal and transverse Spitzer re-
sistivities. Ψ̂ = ecsÃ‖/cTe, Φ̂ = ẽφ/Te, v̂‖ = ṽ‖/cs,
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n̂ = ñ/n, are the dimensionless perturbed parallel com-
ponent of vector potential, electrostatic potential, parallel
ion flow and density, respectively. Alsoωκ = ωκi + ωκe,
whereωκ j =

(
2cTj/eB

)
k · ê‖ × κ, cs = (Te + Ti/mi)

1/2,
ω∗en = − (cTe/eB) k · ê‖ ×∇ ln n, are the curvature drift fre-
quency, sound speed and the diamagnetic drift frequency.

The resistive-inertia MHD incompressible ballooning
equation for high frequency (|ω| ≫ ω∗e, ωke) long wave-
length (k2

θ
ρ2

i ≪ 1 )limit can be written as follows:
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whereωA = vA/qR, is the Alfvén frequency,q is the
safety factor andR is the major radius,ǫn = Ln/R,
with Ln = (dr ln n)−1, is the density gradient scale
length, k‖ = −i(1/qR)d/dθ, k⊥ =

(
nφq/r

)
k̂⊥ (θ). ωη =(

c2η‖/4π
) (
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, is the resistive frequency andτ′ =
1 + 1/τ. Note that in Eq. (5) the electron inertia term,
ωc2k2

θ
/ω2

pe is present. The incompressible ideal MHD
(IMHD) ballooning equation can be retained by neglect-
ing electron inertia and resistivity.

II. Numerical results

Equation (5) is solved numerically using a standard root
finding algorithm for axisymmetric shifted-circle equilib-
rium (in Figures 1 and 2) and for three dimensional equi-
libria of relevance to HSX (Figure 3). For all cases, the
parameters used are relevant to HSX edge plasmas, as in-
dicated in the caption of Fig.1.

Figure 1 shows the normalized growth rate (γ/ωA) as a
function of the normalized pressure gradient (the balloon-
ing parameterα). In this scan, tokamak-like global mag-
netic shear ˆs = 0.1 is chosen to show the ideal MHD
unstable region. HSX has reverse shear and ideal MHD
instabilities for which the mode amplitude does not vary
along the field line (i.e.,k‖=0) are stable for the parameters
studied. The electron inertia and resistivity induce an in-
stability in the ideal MHD stable regimes. The modes are
purely growingωr = 0. The electron inertia modes (η = 0)
are found to be more important than the resistive modes
due to their existence in the first ideal stability region for
HSX relevant parameters. Note that these modes persist
in the ideal MHD second stable regime. Both the electron
inertia and resistive instabilities are characterized by broad
eigenfunctions in the ballooning space as shown in Fig. 2.
Moreover, the qualitative nature of the eigenfunctions is
insensitive to whether electron inertia is present.

Equation (5) is solved numerically in the electro-
static limit using three dimensional equilibria for a quasi-
helically symmetric (QHS) stellarator and a configuration
whose symmetry is spoiled (Mirror) by the presence of
magnetic mirror contributions to the magnetic spectrum.

Figure 3 is a plot of the growth rateγ, normalized to
theR/cs as a function of (k⊥ρ)2. We perform this calcula-
tion for the field line that intersects the locationθ0 = 0,
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Fig. 1 The normalized growth rate (γ/ωA) as a function ofα for
ŝ= 0.1, kθρ = 0.3, ν̂ = 0.023, andβ = 0.0002.
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Fig. 2 Eigenfunction of RIBM as a function ofθ for α = 0.3.
The other parameters are the same as used in figure 1.

ζ0 = 0 on the normalized magnetic surfaces = 0.8980.
This point is thought to be the most unstable choice since
the local shear is small, the local value of the geodesic cur-
vature is zero and the destabilizing influence of the normal
curvature is strongest. The highly resistive (δ = 0, ν , 0)
growth rate in QHS is compared with the growth rate in
the Mirror case. In both configurations the magnitude of
the linear growth rates are found to be comparable, crudely
indicating the same level of anomalous flux. The common
stability properties are due to a similar structure of the cur-
vature and the local magnetic shear.

III. Shear-Alfvén and Drift acoustic
equation in 3-D geometry

The general solution of Eqs. (1)-(4) can be written as a cou-
pled system of a two second order differential equations,
the shear-Alfv́en equation and the drift-acoustic equation:

d
dy
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(6)
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Fig. 3 Normalized growth rate (Rγ/Cs) of the resistive-inertia
ballooning modes in the electrostatic limit as a function
of (k⊥ρ)2 for QHS and Mirror cases fors= 0.8980, τ = 1,
Rν/2cs = 0.42, ǫn = 0.07 andθ0 = 0, ζ0 = 0 field line.
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whereK2
= |∇ϕ|2 − 2q·y∇ϕ · ∇v+ q·2y2 |∇v|2 , a = ∂S/∂ϕ,

is the ”mode number” that describes the component of
the k vector that is perpendicular to the magnetic field
and lies within the magnetic surface,κv = κ · ∇θ × ∇ϕ,
κϕ = κ · ∇v × ∇θ = (−χ·/2p·)B·∇σ, is the geodesic
curvature andσ = j · B/B2. The coordinatey is defined
as labeling points along the magnetic field and as such
B·∇ = χ·(d/dy). Dot over quantities indicate derivatives
with respect to the volume.

IV. Analysis of Resistive Ballooning
Mode equations

We can make analytic progress to understand the structure
of non-ideal MHD ballooning modes by using a multiple
scale analysis. Our calculation generalizes the work of
Hastie et al [1] to three-dimensional equilibria. A small
parameterǫ can be defined that accounts for the disparate
timescales associated with current diffusion and the Alfv́en

time.

ǫ = (
ωη

ωA
)1/3 ≪ 1, (8)

In the following, somewhat general ordering is used

ω ∼ ωs ∼ ωn j ∼ ǫωA (9)

and viscosity is comparable to resistivity,ωµ = ǫ3ωA.

Equations (6,7) can be solved using a two variable expan-
sion procedure. We takey and z = ǫy as two different
length scales and make the ansatz

U (y) = U0 (y, z) + ǫU1 (y, z) + ǫ2U2 (y, z) + .... (10)

Ui(y+ N, z) = Ui(y, z), i = 0,1,2, ... (11)

The function U is periodic iny with period N whereas the
variablezaccounts for the long envelope of the eigenfunc-
tion along the magnetic field line. For|y| ∼ 1 an ideal
MHD region can be identified where resistivity, electron
inertia and viscosity can be neglected. The Shear Alfvén
equations in the zeroth order inǫ can be written as
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At large |y|, the solution of the Shear Alfvén equation
yields the following asymptotic solution
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For this analysis, thus, ideal stability is assumed; the
Mercier stability criterion is satisfied
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In the outer region solution along field lines (|y| & ǫ−1), re-
sistivity, inertia and viscosity must be taken into account.
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We solve Eq. (6) order by order. At second order a solu-
bility condition for U2 is derived that yields a differential
equation forU0 that depends upon integrals ofU1 andV1
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ā
q
∇.

The condition for existence of a solution is
2p· 〈κv〉 + q·2χ·2

(
〈σ〉 −

〈
σB2

〉
/
〈
B2

〉)
> 0. The solutions

(21) give the following eigenvalue expression

ω (ω − ωne) (ω − ωni) = −
ω2

A

(
ωδ2 + iωη

)

〈∣∣∣∣ ∇̂v
∣∣∣∣

2
/B2

〉
(
4π (a/q)2

χ·2

)2 [〈
σ2B2

〉

−

〈
σB2

〉2

〈
B2

〉 +
〈
B2

〉
(
q·2χ·4 (2n+ 1)2

) ×


〈2p·κv〉 + q·χ·2

〈σ〉 −
〈
σB2

〉
〈
B2

〉




2 .

(22)

Solutions to the the above equation lead to an infinite se-
quence of modes with growth rate scaling as for the resis-
tive ballooning mode,γ ∼ ωη1/3 or for the electron inertia
ballooning modeγ ∼ δ.

In the limitω ≫ ωs, V0 = V1 = 0, sound wave propa-
gation is neglected and the visco-resistive-inertia balloon-
ing mode equation can be found
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In the limit of zero viscosity (ωµ = 0), Q2 = 0 in Eq.
(23), and the drift resistive ballooning equation is recov-
ered. This equation has the same form as the resistive
MHD case covered in Ref. [2] except for the diamagnetic

corrections evident in the coefficientQ1 (defined in Eq.(25)
below). A valid solution can be constructed in the ideal and
resistive region by matching the ideal solution for|y| −→ ∞
to the resistive solution for|X| −→ 0. We obtain the general
dispersion relation,∆ = ∆′, where∆′ can be calculated by
using the conventional definition as the ratio of coefficients
of the large and small solutions of the asymptotic form of
the ideal solution, which in this case defined as∆′ ≡ a2/a1,
and

∆ ≡
4y1+2s

0 Q(5−2s)/4

Q1 − (1+ s− H)2

Γ [1/2+ s]
Γ [−1/2− s]

×
Γ

[
(1/4)

(
Q1/2

1 + 3− 2s− DR/Q
1/2
1

)]

Γ

[
(1/4)

(
Q1/2

1 + 1+ 2s− DR/Q
1/2
1

)] , (24)

where

Q1 =
ω (ω − ωni) (ω − ωne)

Q0
, Q0 =

q·2
〈
B2

〉
ω2

A

(
ωδ2 + iωη

)

AN1M
, (25)

X2
=

Z2

y2
0Q1
, y2

0 =
ω2

A

AMω (ω − ωni)
,

M =

〈
B2

∣∣∣∣ ∇̂v
∣∣∣∣

2

〉 
〈∣∣∣∣ ∇̂v

∣∣∣∣
2
/B2

〉
+

1
p·2


〈
σ2B2

〉
−

〈
σB2

〉2

〈
B2

〉





andΓ is the gamma function. For the special case whenDR > 0,
we also reproduce the stability criterion derived in Ref. [2] with
electron inertia and diamagnetic corrections:
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V. Summary
A unified theory of resistive and electron inertia ballooning
modes (RIBM) has been developed. The RIBM is characterized
by broad eigenfunctions in ballooning space. In the absence of
drift effects, the modes are purely growing and persist in regimes
where ideal MHD ballooning modes are stable. For parameters of
interest to HSX, electron inertia effects are more important than
plasma resistivity; electron inertia modes are the most unstable
and have growth rates that scale with the electron skin depth,
γ ∼ δ. The magnitude of the linear growth rates are not sensi-
tive to the magnetic configuration in HSX plasmas. This would
indicate a comparable level of anomalous transport in QHS and
mirror configurations; this is consistent with observations in the
HSX edge region.
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