
Proceedings of ITC/ISHW2007

On rapid rotation in stellarators
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The conditions under which rapid plasma rotation may occur in a three-dimentional magnetic field,
such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed
are found to be attainable only in magnetic fields which are approximately isometric. In an isometric
magnetic field the dependence of the magnetic field strength B on the arc length l along the field is the
same for all field lines on each flux surface ψ. Only in fields where the departure from exact isometry,
B = B(ψ, l), is of the order of the ion gyroradius divided by the macroscopic length scale are rotation
speeds comparable to the ion thermal speed possible. Moreover, it is shown that the rotation must be
in the direction of the vector ∇ψ ×∇B.
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1 Introduction

It is well known in tokamak research that the plasma
tends to rotate faster in the toroidal direction than
in the poloidal direction, particularly when there is
strong neutral-beam injection. It is also well known
that magnetic field ripples damp toroidal rotation.
Theoretically, it is expected that an axisymmetric
plasma should be free to rotate in the toroidal direc-
tion, but that the poloidal rotation should be damped.
To be more precise, if the gyroradius ρ is small com-
pared with the macroscopic scale length L, so that
δ = ρ/L � 1, then the toroidal rotation can be com-
parable to the ion thermal speed vT = (2Ti/mi)1/2,
but the poloidal rotation velocity is of order δvT . This
result follows from the drift-kinetic equation, and will
be rederived below. The purpose of the present pa-
per is to clarify under what conditions rapid rotation
(V ∼ vT ) is possible if the magnetic field is not ax-
isymmetric.

We find that rapid rotation can only occur in
a certain class of magnetic fields, namely, in fields
that are approximately “isometric”. The definition of
an isometric magnetic field is that the field strength
depends on the arc length l along B in the same
way for all field lines on the same flux surface [1].
Thus in an isometric field B = B(ψ, l), where ψ is
a flux-surface label. Interestingly, such fields have
attracted attention because of their favourable con-
finement properties. They are an important subclass
of “omnigenous” magnetic fields, which are fields
where the time-averaged cross-field drift vanishes for
all particle orbits [2, 3]. Quasi-axisymmetric [4] and
quasi-helically symmetric [5, 6] fields are examples of
isometric fields, but isometry is a weaker condition
than quasisymmetry. We also find that the the
rotation velocity vector must point in the direction
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∇ψ ×∇B, so that the streamlines coincide with lines
of constant magnetic field strength. These contraints
follow from the drift kinetic equation in the limit
of zero gyroradius (so-called kinetic MHD), and are
therefore independent of the cross-field transport
collisionality. A somewhat different version of this
calculation is being published in Physics of Plasmas
(October 2007).

2 Expansion of the kinetic equation

First of all, it is important to choose the correct
plasma model from which to proceed. Plasma equi-
librium is usually described by ideal MHD, which is
however not sufficient for our present purposes. Ideal
MHD neglects transport altogether, both within and
across flux surfaces, and therefore permits arbitrary
toroidal and poloidal rotation as well as tempera-
ture variation within flux surfaces. In reality, parallel
transport is many orders of magnitude larger than per-
pendicular transport, which implies that flux surfaces
must be approximately isothermal and also constrains
plasma rotation. These features are incorporated in
so-called kinetic MHD, which follows from the tero-
gyroradius limit of the ion kinetic equation

∂f

∂t
+ (V + v) · ∇f +

e

m

(
E′ + v ×B− ∂V

∂t

−(V + v) · ∇V) · ∂f
∂v

= C(f) + S, (0)

where v = u−V(r, t) is the velocity vector measured
relative to velocity field V, E′ = E + V×B the elec-
tric field in the moving frame, e and m the ion charge
and mass, respectively, C the collision operator and
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S represents any sources present in the plasma. Al-
though V is in principle arbitrary, we shall choose
it to be equal to the lowest-order mean ion velocity.
As in MHD, the electic field is ordered to be so large
that the E × B velocity is comparable to the ther-
mal speed, E ∼ vTB, while the collsion frequency
is taken to be comparable to the transit frequency,
vT /L, in order to allow for all conventional collisional-
ity regimes. The dependent variables f = f0+f1+. . .,
E = E0 + E1 + . . . and, unconventionally, also the
magnetic field B = B0 +B1 + . . . are expanded in the
smallness of δ = vT /ΩL � 1, where Ω = eB/m. In
order to study equilibrium (rather than the approach
to it), the time derivatives of zeroth-order quantities
are assumed to be small, ∂f0/∂t � (vT /L)f0, whilst
higher-order quantities may vary more rapidly (to al-
low for turbulence, for instance). The electric field is
thus electrostatic in lowest order, E0 = −∇Φ0.

The largest terms in Eq. (2) are of order Ωf , and
the others of order δΩf = vT f/L or smaller. In lowest
order, then, our kinetic equation becomes simply

e

m
(E′0 + v ×B0) · ∂f0

∂v
= 0,

and can only hold for all v if

(v ×B0) · ∂f0
∂v

= 0, (1)

and E′0 = 0, so that

V⊥ = V −V · bb =
B0 ×∇Φ0

B2
0

(2)

and b · ∇Φ0 = 0, where b = B0/B0. We shall assume
that the magnetic field at least approximately (i.e.,
in lowest order) possesses flux surfaces, so that Φ0 =
Φ0(ψ, t).

A drift kinetic equation can now be derived in the
conventional way [7, 8, 9, 10] by writing

v = v‖b + v⊥(e1 cosϑ+ e2 sinϑ),

where e1, e2 are unit vectors with e1 × e2 = b, and
averaging over the gyro-angle ϑ. Equation (1) first
implies that f0 is independent of gyro-angle, ∂f0/∂ϑ =
0, and Eq. (2) becomes

Ω
∂f

∂ϑ
=
∂f

∂t
+Λ(f)+

e

m
(v×B1)·∂f

∂v
= C(f)+S(3)

where
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]

·
(
b
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+
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v⊥

∂f

∂v⊥
+

b× v
v2
⊥

∂f

∂ϑ

)
. (4)

Taking the ϑ-average gives the desired drift kinetic
equation

Λ̄(f0) = C(f0) + S, (5)

where

Λ̄(f0) = (V + v‖b) · ∇f0 +
eẼ‖

m

∂f0
∂v‖

+
v2
⊥
2

(∇ · b)
(
∂f0
∂v‖
−
v‖

v⊥

∂f0
∂v⊥

)

−(V + v‖b) · ∇V · b∂f0
∂v‖

+
v⊥
2

(b · ∇V · b−∇ ·V)
∂f0
∂v⊥

,

with Ẽ‖ = b ·E′1 = b · (E1 + V×B1). This equation,
and its derivation, agrees with that derived in Ref. [9]
except for the addition of the term containing B1. It
looks simpler if one of the independent variables is
chosen to be the magnetic moment measured in the
moving frame, and then agrees with Refs. [7, 10].

3 Constraints on the flow velocity

In equilibrium, the source term balances transport
losses and is therefore also relatively small, usually
of order δ or δ2. The solutions to the resulting equi-
librium equation (5),

Λ̄(f0) = C(f0) (6)

are found from a familiar H-theorem argument. Multi-
plying the equation by ln f0, integrating over velocity
space, and taking a flux surfaces average gives〈∫

ln f0C(f0) 2πv⊥dv⊥dv‖

〉
= 0, (7)

and it follows that f0 must be a Maxwellian, whose
density n and temperature T may vary over each flux
surface. Substituting this Maxwellian into Eq. (6)
gives the equation Λ̄(f0) = 0, or

(V + v‖b) ·
[
∇ lnn+

(
mv2

2T
− 3

2

)
∇ lnT

]

−
eẼ‖v‖

T
+
mv‖

T
(V + v‖b) · ∇V · b

−mv
2
⊥

2T
(b · ∇V · b−∇ ·V) = 0,

which can only be satisfied if the following relations
are satisfied [9, 10]:

b · ∇ lnn−
eẼ‖

T
+
m

T
V · ∇V · b = 0,
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b · ∇T = 0,

V · ∇
(

lnn− 3
2

lnT
)

= 0,

∇ · (nV) = 0,

b · ∇V · b− 1
3
∇ ·V = 0.

These equations imply

V · ∇ lnn = ∇ ·V = b · ∇V · b = 0. (8)

We now recall Eq. (2) and note that

0 = ∇× (V ×B0) = B0 · ∇V −V · ∇B0,

which combined with Eq. (8) leads to

V · ∇B0 ·B0 = 0.

Since (∇B0) ·B0 = B0∇B0 we thus conclude that

V · ∇B0 = 0.

In other words, the streamlines of the flow are given
by the intersection between flux surfaces and surfaces
of constant B0. This means that the velocity field can
be written as

V(r) = g(r)∇ψ ×∇B0

for some function g(r) of the spatial coordinates r.
The parallel component of the flow is thus

V‖b = g(r)∇ψ ×∇B0 −
dΦ0

dψ

b×∇ψ
B0

.

Taking the scalar product of this equation with b×∇ψ
gives an expression for g,

gb · ∇B0 +
1
B0

dΦ0

dψ
= 0,

and thus enables us to write down an explicit expres-
sion for the lowest-order flow velocity,

V = −dΦ0

dψ

∇ψ ×∇B0

B0 · ∇B0
. (9)

If B0 is written in Clebsch coordinates, B0 = ∇ψ ×
∇α, then V becomes

V =
∇Φ0 ×∇B0

(∇ψ ×∇B0) · ∇α
.

The requirement (8) that this flow field should be
incompressible now implies a constraint on the spatial
variation of the magnetic field strength,

(∇ψ ×∇B0) · ∇(B0 · ∇B0) = 0. (10)

If B0 is expressed in coordinates (ψ, α, l), where l is
the arc length along B0 then it follows from Eq. (10)
that

(∇ψ ×∇B0) · ∇Ḃ0 = 0,

where Ḃ0 = ∂B0/∂l. Hence

∂B0

∂α

∂Ḃ0

∂l
− ∂B0

∂l

∂Ḃ0

∂α
= 0, (11)

and it follows that Ḃ0 must be expressible as a func-
tion of ψ and B0, i.e., Ḃ0 = Ḃ0(ψ,B0), at least locally.
This implies, in turn, that B0 is isometric. To see this
formally, we note that Eq. (11) can be written as

∂ ln Ḃ0

∂l
=

∂

∂l
ln
(
∂B0

∂α

)
,

and integrated once, to yield

∂B0

∂l
= F (ψ, α)

∂B0

∂α
,

with F an arbitrary function. The general solution is

B0 = B0(ψ, l′),

where l′ = l − l0(ψ, α) is an arc length coordinate
whose origin l0 is related to F by F∂l0/∂α = −1. We
conclude that rotation at a speed comparable to the
thermal speed is only possible if the magnetic field is
isometric in lowest order. The converse is also true:
the flow field (9) satisfies the conditions (8) if B0 is
isometric, and our theorem can thus be stated in the
following way. The lowest-order drift kinetic equation
admits solutions where the mean flow velocity is com-
parable to the thermal speed if, and only if, the mag-
netic field is approximately isometric.

Another way of stating this result is that a suffi-
ciently large radial electric field is only possible if the
magnetic field is isometric. “Sufficiently large” in this
context refers to fields that are strong enough to pro-
duce flow velocities comparable to vT (sonic rotation),
and it is worth noting that this may occur for fields
that are in fact much smaller than E ∼ vTB (though
formally of this order, in the sense of the gyroradius
ordering assumed). The result (9) can be written as

V
E/B0

=
n×∇B0

b · ∇B0
, (12)

where n = ∇ψ/|∇ψ| is the unit vector normal to the
flux surfaces and E = −n · ∇Φ0 is the electric field.
The point is that the right-hand side of (12) can be rel-
atively large (but not infinite in an isometric field), in
which case the parallel component of the velocity (9)
is significantly larger than the perpendicular one. In
tokamaks, for instance, |n×∇B0|/(b · ∇B0) ∼ q/ε�
1, where q is the safety factor and ε the inverse aspect
ratio. As is well known, sonic rotation thus occurs al-
ready for radial electric fields of order E ∼ εvTB/q.
In a stellarator, a similar estimate tends to hold ap-
proximately, but the details depend of course on the
specific magnetic configuration. Importantly, sonic ro-
tation can occur at roughly the same electric field as
when the poloidal E × B drift cancels the poloidal
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component of v‖ for a thermal ion. This “resonance”
condition is thought to strongly affect the neoclassical
transport [11].

It is interesting to note that Eq. (9) implies a sim-
ple expression for the neoclassical polarisation current.
When combined with the momentum equation

ρ
dV
dt

= j×B−∇ ·P,

where P is the pressure tensor, it yields the perpen-
dicular current as

j⊥ −
B× (∇ ·P)

B2
=
ρB
B2
× dV

dt
' − ρ

B2

∂∇Φ
∂t

,

where the last, approximate, equality refers to low
speeds, ∂V/∂t� V · ∇V.

The result that the eletric field cannot be large
unless the magnetic field is isometric suggests a para-
dox in the low-density limit, since any electric field
strength is possible in vacuum. The resolution lies
in our ordering of the collision frequency, νi ∼ vT /L.
This is the standard neoclassical ordering, and is usu-
ally followed by a subsidiary ordering where the coll-
sion frequency is taken to be smaller or larger than
the transit frequency, but usually not as small as
ν ∼ δvT /L. At extremely low densities, this latter
case must be allowed, in which case the lowest-order
drift kinetic equation becomes Λ̄(f0) = 0 and does not
constrain f0 to be Maxwellian or B0 to be isometric.

4 Conclusions

It is well established that plasma rotation tends to
have a beneficial influence on plasma confinement.
Therefore it is of interest to establish under which con-
ditions rotation is allowed to occur. We have consid-
ered this question for general three-dimensional mag-
netic confinement systems, and found that sonic ro-
tation is only possible in isometric magnetic fields,
and can only occur in the direction of constant mag-
netic field strength. In the special case of a tokamak,
plasma rotation must therefore be purely toroidal in
lowest order, as is well known both theoretically and
experimentally. (Although the poloidal rotation in ex-
periments has been reported to exceed its neoclassical
prediction, it is still far smaller than the toroidal ro-
tation [12, 13].)

In stellarators, the radial electric field and rota-
tion velocity are set by the condition of ambipolar
cross-field transport, and is usually fairly slow in ex-
periments, V � vT . It is often the case that neo-
classical transport dominates, and the magnitude and
direction of the rotation then depend on the collision-
ality and heating channel. What we have shown in this
paper is that rapid rotation can only occur in isomet-
ric magnetic fields and only in the direction ∇ψ×∇B.

These constraints are approximate, in the sense that
they only need to be satisfied to lowest order in gyrora-
dius, but are independent of the cross-field transport.
They therefore hold in all (conventional) collisional-
ity regimes, and also in the presence of gyro-kinetic
turbulence.
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