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Self-similarly evolving, minimally dissipated, and dynamically stable
self-organized states obtained by a universal theory
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With the use of a universal theory of self-organization, a novel set of simultaneous eigenvalue equations having dissipative
terms are derived to find self-similarly evolving, minimally dissipated, and dynamically stable states of plasmas realized
after relaxation and self-organization processes. Typical spatial profiles of plasma parameters, electric and magnetic fields
and dissipative factors are presented, all of which are determined self-consistently with each other by physical laws and

mutual relations among them, just as in experimental plasmas.
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1. Inroduction

By using model equations such as the Grad-Shafranov
equation, stability of equilibrium configurations in a stationary
state is analytically or numerically judged by using suitable
stability criteria in the traditional algorithm to find stable states
[1]. However, all dynamic quantities in any experimental
systems are never stationary, but are continuously evolving
along time. Reasonable judgment on experimentally stable states
can be done only when the configurations have come into a
phase of self-similarly evolving and dynamically stable states. A
recent universal theory of self-organization for finding
eigenvalue equations to obtain self-similarly evolving and
dynamically stable states [2-7] has been shown to incorporate a
previous theory [8] for obtaining the minimum dissipative state
of magnetic energy, by means of which “the so-called Taylor
state” [9] can be derived. The concept of selective decay together
with that of helicity invariance in the traditional theories [9-11] is
analytically proved in [4-6] to have theoretically unrelated with
“relaxed states”. The fusion plasma is known to be described for
simulations by a set of charge, mass, momentum, and energy
conservation laws, and Maxwell's equations to follow its
dynamic evolution and to analyze relaxation processes and
relaxed states. However, replacement of any element in the set
by “the so-called helicity conservation law” [9-11] makes the
dynamic evolution untraceable due to this nonphysical law. This
fact also means that the all theoretical basis of the theories
[9-11] has no theoretical and physical connection with
simulation results [12] and experimental ones of relaxed plasmas
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[13, 14] observed and reported so far.

2. Theories and numerical results

Applying a principle of the minimum change rate of global
auto-correlations for a generalized dissipative dynamic open or
closed systems with V dynamical quantities of A dimensional
variables and using the variational calculus to the second
variation, we obtain the following N simultaneous eigenvalue
equations, which is used as a universal theory to find
self-similarly evolving and dynamically stable self-organized
states and is applicable to various dynamical systems [3, 7, 15];
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Here, D/ [ ¢ ] represents dissipative or non-dissipative, linear or
nonlinear operators for the change of a dynamical quantity ¢ ; by
avariable /. Applying Eq.(1) directly to all equations of mass,
momentum and energy conservation laws and Maxwell's
equations with the displacement current neglected for the
two-fluid model of fully ionized, compressible and dissipative
fusion plasmas and using usual normalization, we obtain the

following set of simultaneous eigenvalue equations;
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Fig.1 . Typical self-similarly evolving and dynamically stable self-organized configurations of the RFP in a simplified cylindrical.
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where jisis the bootstrap current, (finer, fine2, fnes, fnes)s (it finizs
finss Toi) and (foer, fenos foness fones), are factors by normalization
for the conservation laws of electron and ion momentums and
energy, respectively, and f;and fare those for Eqs. (10) and (12),
respectively. Using dominant terms in the limiting case of
uniform conductivity ¢ and negligible viscosity v and thermal
conductivity x, Eqgs. (1) - (11) lead to the so-called Taylor state,
just the same as in [7]. In general cases, however, these equations
can be applicable to finite beta confinement systems of the
Tokamak, the reversed field pinch (RFP), the field reversed
configuration (FRC), and so on. Using the cylindrical model
for simplicity and the 4 rank and 4th order Runge Kutta method
under suitable boundary conditions on measurable quantities by
referring to experimental data [14], we have numerically solved
central terms = right-hand sides of Egs. (1) - (11) to get
self-similarly evolving and dynamically stable self-organized
configurations of the RFP. A typical result is shown in Figs. 1(a),
1(b) and 1(c), where all physical quantities and dissipative
factors are shown by their symbols. It is seen from the data
profiles that all physical quantities are related self-consistently
with each other, i.e., k., and k ;, are determined by 7, n;, T,
T, and B, and T¢ and T; are determined by k ¢; , ki, 0,and},
and so on, to lead to negligibly small current density at the
boundary wall like as in experimental plasmas. We also find
from profiles of ey, t4ip, et and uit in Fig. 1(a) that there existsthe
shear flow which depends on the profile of v, ie. , mainly on
that of 7;, and would stabilize of the self-organized RFP plasma.

2. Concluding remarks

We have derived a novel set of simultaneous eigenvalue
equations for finding selfssimilarly evolving, minimally
dissipated and dynamically stable states realized after relaxation
and selforganization processes [cf. Egs.(1) - (12) ]. The set of
simultaneous equations is applicable to all type of magnetically
confined fusion plasmas. Solving numerically the set of
equations in the cylindrical model, we have shown typical
self-similarly evolving and dynamically stable self-organized
configurations of the RFP plasma including a lot of spatial
information on related physical quantities useful for detailed
experimental investigation. It should be emphasized that all
physical quantities of interest are self-consistently determined by
physical laws and mutual relations among them.

From the present universal theory of self-organization, we
should recognize a clear fact that a paradigm shift from the
traditional concept of stationary stability to more real concept of
dynamical stability is definitely necessary for faster development
of fusion science and technology in order to avoid near future
energy crisis by shortening distance theories and experiments.
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