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Previously reported benchmarking examples for the analytical formulas of neoclassical viscosities were made 

implicitly assuming applications in a future integrated simulation system for the LHD (Large Helical Device). 

Therefore the toroidal period numbers assumed there were mainly N=10. In this kind of calculation, however, an 

implicit (or sometimes explicit) assumption of /N<<1 is sometimes included. This assumption is included not only 

in simplified bounce averaged drift kinetic equations for ripple diffusions, but also in the equation before the 

averaging for non-bounce-averaged effects determining neoclassical parallel viscosity and the banana-plateau 

diffusions. To clarify the applicability of the analytical methods even for configurations with extremely low 

toroidal period numbers (required for low aspect ratios), we show here recent benchmarking examples in NCSX 

(National Compact Stellarator Experiment) with N=3 and QPS (Quasi-poloidal Stellarator) with N=2. 
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1. Inroduction 
  The moment equation approach for neoclassical 

transport [1,2] in non-symmetric toroidal plasmas had 

been developed mainly for neoclassical parallel flows and 

the associated parallel viscosity [3-6]. Even though it was 

shown in Ref.[7] that a consistent frame work including 

not only the flows but also radial diffusions (in other 

words, not only the parallel viscosity, but also poloidal 

and toroidal viscosities) can be constructed in this line of 

moment approach, methods to calculate all of required 

viscosity coefficients in general collisionality regimes in 

general toroidal configurations had not been shown. 

Motivated by design activities of advanced stellarators, a 

method to obtain the full neoclassical viscosity 

coefficients was developed in Ref.[8]. It was shown there 

that three mono-energetic viscosity coefficients 

M*(parallel viscosity against flows), N*(driving force for 

bootstrap currents), and L*(radial diffusion) are required 

to describe the full neoclassical characteristics of general 

non-symmetric toroidal configurations. Since existing 

numerical methods such as variational methods and 

Monte Carlo methods for the drift kinetic equation 

described in the 3-D phase space (poloidal angle , 

toroidal angle , pitch angle ) could be applicable [8], 

applications of the new theory were done for various 

types of advanced helical/stellarator configurations [9,10]. 

However, this step of the development of the moment 

approach was still in the “basic frame work”. Even 

though there were many alternative methods for the L* in 

the collisionless limit (aforementioned ripple diffusions), 

the other viscosity coefficients could be obtained only by 

the Drift Kinetic Equation Solver (DKES) code 

[8,9,10,11]. There are many demands for faster and easier 

estimation methods for the neoclassical quantities, in 

integrated simulation systems using iterative calculations 

of the equilibrium and the transport [12], in the 

configuration optimizations [9], and in experimental 

studies investigating dependences on configurations. 

Since the viscosities (or resulting neoclassical transport 

coefficients) are direct consequences of guiding center 

drift motions, evaluating them is an important part of 

understanding the characteristics of the designed 

magnetic configurations [9,10,13,14]. Even in tokamak 

experiments, neoclassical toroidal viscosity effects due to 

breaking the axisymmetry have recently been studied [15], 

and thus the framework of the moment approach for 

non-symmetric configurations and the methods to 

calculate the viscosity coefficients are now required for 

all studies of toroidal plasma confinements. In theories of 

axisymmetric tokamaks, simple analytical methods based 

on asymptotic expansions of the drift kinetic equations 

and connections of results of them are commonly used 

[1,16]. Since this approach using analytical methods will 

be required also in a future integrated simulation system 

for the LHD(Large Helical Device)[12], we had 

previously carried out derivations and benchmark tests of 
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the analytical formulas for the three mono-energetic 

coefficients [17]. The previous benchmarking examples 

were made implicitly assuming applications in the LHD 

[a helical heliotron with major and minor radii of 

R0=3.9m, a=0.6m, and magnetic field strength of B0 3T]. 

Therefore the toroidal period numbers assumed there 

were mainly N=10, and the assumed Bmn
(Boozer) 

[B= Bmncos(m nN )] spectra didn’t include n 0,1. One 

open issue remaining there is the 

ripple-trapped/untrapped boundary layer. Even though 

there are many alternative calculating methods for the 

bounce-averaged motion of the ripple-trapped particles, 

this boundary layer causes coupling effects between the 

bounce-averaged motion of ripple-trapped particles and 

the non-bounce-averaged motion of untrapped particles 

(collisional detrapping/entrapping). In Ref.[17], a 

previous boundary layer theory by Shaing and Callen for 

rippled tokamaks [18] was applied with an extension to 

multi-helicity stellarators. One effect of this coupling, 

which was investigated also in Ref.[17], is a difference of 

N* (or G
(BS)

B
2

N*/M*) in the 1/  regime (Es/v 0) 

from the collisionless detrapping  regime (Es/v 0, 

/v 0) value given by Refs.[3,4]. However, we had not 

shown any benchmarking examples for the 1/
1/2

 

diffusion, which is another important effect discussed in 

Ref.[18]. Even for the N* in the 1/  regime, the 

numerical examples for more general cases had not been 

shown. To investigate these effects in configurations 

including Bmn of n 0,1 and with extremely low toroidal 
period numbers (required for low aspect ratios) giving 
larger /N, we show in this paper recent calculation 

examples in NCSX (National Compact Stellarator 

Experiment)[10,13] and QPS (Quasi-poloidal Stellarator) 

[9,10,14]. 

 

2. Calculations in NCSX 

  The NCSX is a quasi-axisymmetric (QA) toroidal 

system with N=3, R0=1.4m, a=0.32m, and B0 2T. Here 

we consider the calculation on a flux surface with 

normalized toroidal flux of ( / edge)
1/2

=0.51 

(corresponding to r 0.165m) in a standard configuration 

(NCSX-m50) with a finite beta of =4% and a finite 

toroidal current of Ip=178 kA as an example. The 

notations for the flux surface coordinates (mainly the 

Boozer coordinates) in Refs.[8,17] are followed and thus 

the radial derivatives of the poloidal and toroidal 

magnetic fluxes are  ' =0.1178T•m,  ' =0.2513T•m, and 

covariant poloidal and toroidal components of the 

magnetic field are B  =0.0036T•m, B  =2.3210T•m, 

respectively, on this flux surface. The Bmn
(Boozer)

 in a 

range of 0 m 16 and n 11 are used. As described in 

Ref.[18], the boundary layer structure is determined by a 

drift kinetic equation (V// Ca
PAS

)fa1=0, where V//  

b• (μ=const) is the linearized orbit propagator and Ca
PAS

 is 

the pitch-angle-scattering operator with the collision 

frequency of D
a

[8]. Since V// fa1 0 for the non-trivial 

solution of this equation, the existing bounce- or 

ripple-averaging methods assuming V//fa1=0 is not 

appropriate for this analysis. Therefore we should use the 

bounce- or ripple-averaging methods to obtain fa1/ μ in 

the ripple-trapped pitch-angle range, which gives the 

boundary condition for the boundary layer analysis [18], 

together with the analytical solution for the boundary 

layer as complimentary methods. For this analytical 

solution, a model expression of the magnetic field 

strength B/B0=1+ T( )+ H( )cos{L N ( )} is 

required. We use here 

H( )={Bmax( ) Bmin( )} / (2B0 )  for each poloidal 

angle  to define H( ). This is a truncation of the Fourier 

series used by Todoroki [20] who expanded not the 

amplitude but the phase of B/B0 1 T( ).  

Analogously, 1+ T( ) is given by 

1+ T( )={Bmax( ) + Bmin( )} / (2B0 ) . The residual 

ripple-well structure is distorted, or sometimes eliminated 

at ± /2, by finite rotational transform per toroidal 

period ( ’/ ’)/N in cases with small H. For this kind of 

situations, the effective ripple well depth eff and effective 

ripple well length correction * were introduced in the 

theory for rippled tokamaks [18]. We use also this 

technique with an extension to helical/stellarator 

configurations. The error of a well-known Shaing-Hokin 

formula [21] for the 1/  ripple diffusions in H 0 limits 

(for e.g., H 0.01), which was pointed out in Ref.[8], is 

strongly reduced by introducing this method. By using 

these notations, an expression for the 1/
1/2

 diffusion 

coefficient in Ref.[18], which is a contribution of 

ripple-trapped pitch-angle range 0  
2

1 for 

 
2

{w μB0(1+ T eff)}/(2μB0 eff), can be extended to a 

form including more general non-symmetric 

configurations as 

 

L*( 1/2) = 2.92
2
2

v

D
a

1/2
23/4

( ')2
V'

4 2

1/2

            
d

2
 eff

 3/4 B0
2sin 1 *

N ' L ' ' /

1/2

            T
2

1 * 2 T H
+

2

9
(1 * 2 ) H

2

 

             (1) 

Here, for the aforementioned distribution function fa1/ μ 

in 0  
2

1 as the boundary condition, an analytical 

solution by Shaing and Hokin [21] is used to consider 

analytically the dependence on the magnetic 

configurations. From this form of L*( 1/2) eff
 3/4N 1/2 , 

we can understand that this component of the diffusions 

can dominate over the 1/  diffusion of L*( 1) eff
 3/2N 0  
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[21] only in configurations with small ripple amplitude 

eff and with small toroidal period numbers N, and 

therefore it will appear in QA configurations rather than 
the rippled tokamaks considered in Ref.[18]. In fact, 

previous numerical results in CHS-qa [23] with N=2 

showed a clear 1/
1/2

 dependence of L* in a wide range 

of collisionality ( /v).  
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Fig.1  Mono-energetic viscosity coefficients in the 

NCSX given by the analytical methods (solid curves) and 

by the numerical method in the 3-D phase space (DKES) 

(open symbols). (a) the geometrical factor 

G
(BS)

B
2

N*/M*, (b) components of the diagonal 

diffusion L*. 

 

  Figure 1(a) shows the mono-energetic viscosity 

coefficients N* in the NCSX obtained by the analytical 

formulas [17] and those by the DKES [11] with the 

conversion formulas in Ref.[8]. The mono-energetic 

coefficient L* (Es/v 0) is analytically given by sum of 

three components: (1) L*( 1) given by appropriate 

bounce-averaging codes with field line integral methods, 

(2) L*( 1/2) given by Eq.(1), and (3) contributions of 

non-bounce-averaged drifts given by Eq.(16) in Ref.[17] 

(L*(banana-plateau)). We used here the NEO code [22] for 

the L*( 1) in the NCSX, and Figure 1(b) shows these 

components L*( 1), L*( 1)+L*( 1/2), L*(banana-plateau), and 

the DKES results. The sum L*( 1)+L*( 1/2) approximately 

predicts a deviation of the DKES from a pure 1/  

scaling given by the bounce-averaging codes at 

/v<10
3
m

1
. In these figures, we show also the 

dependences of the DKES results on the E B drift 

parameter Es/v. The N* in NCSX is insensitive to Es/v 

even in the range of Es/v 3 10
3
T since the 1/  diffusion 

of the ripple-trapped particles accompanying the 

boundary layer correction N*(boundary) in Eq.(14) in 

Ref.[17] is strongly reduced in this configuration. In spite 

of this reduction of L*( 1) and accompanied N*(boundary), 

we can see another boundary layer effect in Fig.1(a). The 

N* given by the DKES transiently becomes larger at 

/v~10
3
m

1
 compared with the analytical formula. This 

transient increase is peculiar to QA configurations where 

the 1/
1/2

 component becomes comparable or dominates 

over the 1/  component in the radial diffusion, and thus 

was found also in CHS-qa [23]. Although this effect in 

the 1/
1/2

 regime cannot be calculated by a method in 

Ref.[17] assuming a collisionless limit of the 1/  regime 

(This previous formula gives too small values for the QA 

configurations and thus is not included in Fig.1(a)), the 

transient increase, which is about 30% at most, will not 

be so important in the energy integrated coefficients. 

 

3. Calculations in QPS 

  The QPS adopts a quasi-poloidal configuration 

reducing the radial drift of the trapped particles [19], with 

N=2, R0=1m, a=0.3m, and B0 1T. The parameters of the 

flux surface, where the calculation examples are made,  
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Fig.2  Mono-energetic viscosity coefficients in the QPS 

given by the analytical methods (solid curves) and by the 

DKES (lines with symbols). (a) the geometrical factor 

G
(BS)

B
2

N*/M*, (b) components of the diagonal 

diffusion L*. 
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are ( / edge)
1/2

=0.49 (corresponding to r 0.14m),  ' 

=0.0275T•m,  ' =0.1423T•m, B  =0, and B  =1.1403T•m. 

The Bmn
(Boozer)

 ranges are 0 m 20 and n 20. Results in 

the QPS are shown in Fig.2. In Fig.2(b), the 1/  diffusion 

coefficient L*(1/ ) given by the Shaing-Hokin formula 

[21] including the minor modifications of B expression in 

Sec.2 is shown to confirm a validity of following 

discussions on the boundary layer correction. Even for 

L*( 1) eff
 3/2 , the Shaing-Hokin theory still retains an 

accuracy of factor 2. Therefore we can investigate 

characteristics of the boundary layer correction on the 

parallel viscosity N*(boundary) with a weaker dependence 

on eff and H by the analytical method. As confirmed in 

Ref.[17], we have to interpret a previous ”1/  regime” 

formula for the parallel viscosity derived by Shaing,et 

al.[3,4] and the N* connection formulae including it (red 

solid curve in Fig.2(a)) as expressions for strong Es/v 

limit (i.e., the  regime or the 
1/2

 regime discussed later). 

The correct 1/  regime (Es/v 0) value is given by adding 

a boundary layer correction term N*(boundary) which was 

neglected in Refs.[3,4]. Although the calculation of 

N*(boundary) in the QPS ( H/  1.5 T/  and 

M=±2.4rad) requires some minor modifications for 

Eq.(14) in Ref.[17], they will be reported in a separated 

article. In Fig.2(a), we showed the 1/  regime asymptotic 

value of N* given by N*
(sym)

+N*
(asym)

+N*(boundary) [17]. 

It approximately predicts the numerical result for a weak 

radial electric ranges of Es/v<1 10
4
T by the DKES.  

 

4. Concluding remarks 

  The mono-energetic neoclassical viscosity coefficients 

are investigated in two low aspect stellarator 

configurations with contrasting design concepts. For M*, 

N*
(asym)

, ( Xa, GXa
(asym)

) defined in Ref.[17] due to pure 

non-bounce-averaged motions [3,4], the validity of the 

analytically approximated formulas [8,17] has been 

confirmed even in the NCSX and in the QPS. In the two 

configurations, there are contrasting effects of the 

ripple-trapped/untrapped boundary layer at  
2

1 causing 

coupling effects between the bounce-averaged motion of 

ripple-trapped particles and the non-bounce-averaged 

motion of untrapped particles. The 1/
1/2

 ripple diffusion 

L*( 1/2) in the QA configurations is peculiar to the 

configurations with small ripples. In the ripple-trapped 

pitch angle range 0  
2

1 in these configurations, the 

1/
1/2

 component of the perturbed distribution function is 

not negligible compared with the small 1/  component. 

However, their effects on the ripple-untrapped 

pitch-angle range  
2
>1 is not important. In contrast to 

this, the boundary layer affects on this range  
2
>1 in 

configurations without quasi-axisymmetry and make 

other boundary layer corrections on the viscosity 

coefficients; N*(boundary) appearing in the 1/  regime 

(Es/v 0) and also L*(boundary) near the collisionality regime 

boundary between 1/  and plateau regimes. Even though 

the integration constant in 0  
2

1 is negligible compared 

with a large 1/  component, boundary layer effects as a 

driving force of ( eff)
1/2

 for the flows in  
2
>1 is not 

negligible for the 
0
 component of the distribution 

function in these configurations without 

quasi-axisymmetry.  

 

Acknowledgements 

  A main part of this work was done during one author 

(S.N.)'s visit to the Princeton Plasma Physics Laboratory 

(PPPL) and the Oak Ridge National Laboratory (ORNL) 

sponsored by the Graduate University for Advanced 

Studies (GUAS). A NIFS coordinated research program 

NIFS07KNXN103 also supports this work. 

 

 

References 

[1] S.P.Hirshman and D.J.Sigmar, Nucl.Fusion 21, 1079 (1981) 

[2] K.C.Shaing and J.D.Callen, Phys.Fluids 26, 3315 (1983) 

[3] K.C.Shaing, E.C.Crume,Jr.,et al., Phys.Fluids B 1,148(1989) 

[4] K.C.Shaing, B.A.Carreras et al., Phys.Fluids B1, 1663(1989) 

[5] N.Nakajima and M.Okamoto, J.Phys.Soc.Jpn.61, 833 (1992) 

[6] N.Nakajima, M.Okamoto, and M.Fujiwara.  

   J.Plasma Fusion Res.68, 46 (1992) 

[7] H.Sugama and W.Horton, Phys.Plasmas 3, 304 (1996) 

[8] H.Sugama and S.Nishimura, Phys.Plasmas 9, 4637 (2002) 

[9] D.J.Strickler, S.P.Hirshman, D.A.Spong, et al.,  

   Fusion Sci. Technol.45,15(2004) 

[10] D.A.Spong, Phys.Plasmas 12, 056114 (2005) 

[11] W.I.van Rij and S.P.Hirshman, Phys.Fluids B 1,563 (1989) 

[12] Y.Nakamura, M.Yokoyama, N.Nakajima, et al.,  

   Fusion Sci.Technol. 50, 457 (2006) 

[13] D.R.Mikkelsen, H.Maassberg, M.C.Zarnstorff, et al., 

   Fusion Sci.Technol. 51,166 (2007) 

[14] D.A.Spong, S.P.Hirshman, J.F.Lyon, et al.,  

   Nucl.Fusion 45,918(2005) 

[15] W.Zhu, S.A.Sabbagh, R.E.Bell, et al.,  

   Phys.Rev.Lett.96, 22002 (2006) 

[16] W.A.Houlberg, K.C.Shaing, S.P.Hirshman, and  

   M.C.Zarnstorff, Phys.Plasmas 4, 3230 (1997) 

[17] S.Nishimura, H.Sugama, and Y.Nakamura,  

   Fusion Sci.Technol.51,61(2007) 

[18] K.C.Shaing and J.D.Callen, Phys.Fluids 25, 1012 (1982) 

[19] H.E.Mynick, Phys.Fluids 26, 1008 (1983) 

[20] J.Todoroki, J.Phys.Soc.Jpn 8, 2758 (1990) 

[21] K.C.Shaing and S.A.Hokin, Phys.Fluids 26, 2136 (1983) 

[22] V.V.Nemov, S.V.Kasilov, W.Kernbichler, and M.F.Heyn,  

   Phys.Plasmas 6, 4622 (1999) 

[23] S.Okamura, K.Matsuoka, S.Nishimura, et al.,  

   Nucl.Fusion 44, 575 (2004) 


