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A previous formulation of the neoclassical transport in helical/stellarator devices based on the moment equation 

approach is extended to allow the poloidal and toroidal variation of the densities and temperatures of na/na, Ta/Ta 

< B/B. Since the transport of impurities with high collisionalities (so-called Pfirsch-Schlüter diffusions which are 
separated in our previous works) is determined by the local parallel force balance before the flux-surface averaging 
including these variations na, Ta an important purpose of this extension is to study radial profiles of the impurity 
density under the self-consistent ambipolar radial electric field Er in plasmas containing electrons and main ions 
corresponding to the collisionless (1/ , , or banana) regimes or the plateau regime, and impurity ions in the 
Pfirsch-Schlüter regime. The Legendre-Laguerre expansion with orders of l=0,1 and j=0,1,2 is used for this local 
momentum balance to include the energy scattering collisions and the effect of the radial electric field in 
non-symmetric toroidal plasmas. 
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1. Introduction 

   Recently, various types of high-density operations are 
studied in helical/stellarator devices [1,2] and the 
neoclassical processes on the impurity transport in these 
high-density conditions also attract much attention [1,3]. 
Although codes based on the so-called moment equation 
approach [4] are used for this kind of studies in 
axisymmetric tokamaks, codes to handle 
multi-ion-species plasmas in the helical/stellarator 
devices are still under developments. Even though a 

method to obtain the neoclassical transport matrix in 

general multi-ion-species plasmas in general 

non-symmetric toroidal configurations had been shown 

[5], it handled only a part relating to the flux surface 

averaged part of the momentum balance 

B• • a ea na BE// = BF//a1 . We had not shown any 

method to handle the poloidally and toroidally varying 

part (local structure) of the momentum balance and flows 

nau//a, q//a before the flux-surface averaging. In this 

momentum balance, the densities na and temperatures Ta 

of each particle species (a = e , H
+
, D

+
, T

+
, He

+
, He

2+
, …) 

are not flux surface quantities. Although the poloidal and 

toroidal variations of the potential are small because of a 

constraint by the total energy conservation to minimize 

the Joule loss J•E, the density and temperature 

perturbations na, Ta are not limited by this constraint. 

Only the total pressure pa= naTa can be the flux surface 

quantity in the MHD equilibrium. In a present study, we 

extend the stellarator moment equation approach [5] to 

allow the poloidal and toroidal variation of the densities 

and temperatures of na/na, Ta/Ta < dB/B. The theory for 

the “neoclassical transport of impurities”[6] in general 

toroidal plasmas including full parts of collisional 

diffusions and neoclassical parallel flows is completed by 

this extension. Since the parallel force balance including 

the variation na, Ta determines the transport of 

impurities with high collisionalities (so-called 

Pfirsch-Schlüter diffusions which are separated in our 

previous works), an important purpose of this extension is 

to study radial profiles of the impurity density 

(accumulation or shielded “hole”) under the 

self-consistent ambipolar radial electric field Er in 

plasmas containing electrons and main ions 

corresponding to the collisionless (1/ , , or banana) 

regimes or the plateau regime, and impurity ions in the 

Pfirsch-Schlüter(P-S) regime. 

 

2. Moment Equations 

  Although the moment equations for the poloidally and 

toroidally varying part must be derived from the 

Vlasov-Fokker-Planck equation [7], we will report details 

of this derivation in separated articles. Also on the flux 

surface averaged part of momentum balance, which is 

basically unchanged from Ref.[5] even in the extension of 

the theory except replacing u//a by nau//a/ na , the details 

will not be described here. We show here only the 

essential part of the results on the poloidally and 

toroidally varying part. By taking the Legendre-Laguerre 
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moments of the orders of l=0,1 and j=0,1,2 of a part of 

the linearized drift kinetic equation (LDKE) after 

separating Xa as a source of the flux surface averaged 

part of the momentum balance [5], we obtain following 

equations. Hereafter, notations in Ref.[5] are followed. 

Furthermore we concentrate in this paper only in the local 

momentum balance in which the flux surface averaged 

components of flows and forces are subtracted. The 

particle and momentum conservation laws, which are the 

Legendre-Laguerre moments of the LDKE with orders of 

l=0 and j=0,1,2, are given by 
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The parallel force balances, which are the 

Legendre-Laguerre moments of the LDKE with orders of 

l=0 and j=0,1,2, are given by 
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.  (2) 

  In Eqs.(1)-(2), the energy scattering coefficients ei  j
ab

 

and the friction coefficients li  j
ab

 are calculated by the 

coefficients Mab
i  j , Nab

i  j , Pab
i  j

 and Qab
i  j

 which are listed in 

Eqs.(4.8)-(4.17),(5.21),(5.22) and (6.6)-(6.12) in Ref.[6]. 

In contrast to the flux surface averaged part of the 

momentum balance in Ref [5] using the 13M 

approximation, we included the Laguerre order of j=2 

following the tokamak P-S transport theory [6]. An 

important purpose of this approximation is to include the 

energy scattering collision effects [6] and also the E B 

drift effect in Eq.(1), which is peculiar to non-symmetric 

toroidal configurations. These effects were not included 

previous formulations for the multi-ion-species plasmas 

in Refs.[8,9] based on the 13M approximation. Eq.(1) 

includes u//
(rigid)

b•  corresponding to the parallel velocity 

of the moving frame in which the adiabatic invariant 

 μ mav2 /2B  and parallel particle velocity 

  v = ±v 1 μB/w( )1/2 , where  w mav2 /2 , are defined 

[10,11]. In general non-symmetric toroidal plasmas this 

velocity is given by  

 

u(rigid)
BcEs
2 ' '

' B ' B

B2
+
V'

4 2 H2
 .    (3) 

Here, H2 is a constant on the flux surface used in Ref.[12]. 

This term vanish in symmetric configurations as follows 

and thus the present theory automatically includes the 

rigid rotation of the symmetric plasmas [4,6]. In 

symmetric configurations, there are only Fourier modes 

(m,n) of B and distribution functions satisfying 

' m + ' n

' m ' n
= const

' L + ' N

' L ' N
 .        (4) 

In these cases, H2, 
 
u(rigid) , and 

(
 
u(rigid)b +cEs s B/ B

2
)•  become 

 

H2
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=
' L + ' N

' L ' N
,       u(rigid)

=
BcEs
B2

B L + B N

' L ' N
 

 

u(rigid)b + cEs
s B

B2
i =

cEs
B2 g

B L + B N

' L ' N
' + '

             B B

                    (5) 

This operator vanishes for the “symmetric” Fourier 

components of cos(m n ) and sin(m n ) satisfying 

Eq.(4). 

  In Eq.(2), we do not include the poloidally and 

toroidally varying part of the parallel electric field 

determined by the charge neutrality [13]. A reason of it is 

that we cannot forbid an existence of l=0, j 3 

components in the electron distribution functions and in 

the electron force balance since we assume here cases 

with sufficiently high electron temperatures [1-3] giving 

long mean free paths of the electrons ( eevTe>>Lc) even if 

the collisionality of the ions including the impurities may 

correspond to the P-S regime. When we allow the 

existence of l=0, j 3 components in the electron 

distribution, the problem described by Eqs.(1)-(3) is not 

closed. In these cases with sufficiently electron 

temperatures, however, we can close this problem by the 

charge neutrality without the parallel electric field instead 
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of including the higher order Laguerre terms. Although 

this procedure for the moment closure will be reported in 

a separated article, the conclusion of it is only replacing 

the friction coefficients l3 j
ea

= l j3
ae

 in Eq.(2) by other 

newly defined friction coefficients 3 j
ea

= j3
ae

. In Eq.(1), 

the resulting P-S current under this charge neutrality, 

which should be a function only of total pressure gradient, 

is independent of the density and temperature 

perturbations na, Ta of individual species. By the 

momentum conservation of the friction forces, the total 

pressure perturbation given by Eq.(2) satisfies 

pa1
PS

a
= Ta na1

(j=0)
+ na Ta1

(j=1)
=

a
0  (the total 

pressure is a flux surface quantity). 

 

3. Numerical Examples 

  The problem described by Eqs.(1)-(3) including the 

replacement of l3 j
ea

= l j3
ae

 by 3 j
ea

= j3
ae

 can be solved by 

a Fourier expansion method in the Boozer coordinates. In 

this section, we show a numerical example of the solution. 

By solving this problem, we can obtain the P-S diffusion 

coefficients defined by [5, 9],  

 

a
PS

qa
PS /Ta

=
c

ea

UF
 a1

UF
 a2

(LPS)11
ab (LPS)12

ab

(LPS)21
ab (LPS)22

ab
b

Xb1

Xb2

. (6) 

The function 
 
U( , )  is defined in Appendix A in Ref.[5], 

and thermodynamic forces corresponding to radial 

gradients of the pressures and temperatures Xa1, Xa2 also 

are defined in Eq.(10) in Ref.[5]. The Onsager symmetry 

(LPS) j  i
ba

= (LPS)i  j
ab

 is satisfied by the symmetric relations 

of the collision coefficients ej  i
ba
= ei  j

ab
 and l j  i

ba
= li  j

ab
 [6], 

and the intrinsic ambipolar condition of a
PS

 also is 

satisfied by the momentum conservation of the friction. 

Because of the stellarator symmetry B( , )=B( , ), 

these coefficients are even functions of the radial electric 

field strength Er. Figure.1 shows an example of the 

results. In this example, following Refs.[5,12], the 

magnetic field assumed there is that with B=B0[1 t 

cos B + h cos(L B N B)], L=2, N=10, B0=1T,  '=0.15T m, 

  '=0.4T m, B  =0, and B  =4T m. The contained ion 

assumed here is a mixture of protons (H
+
) and fully 

ionized neon (Ne
10+

), which is used for the charge 

exchange spectroscopic measurements and the impurity 

transport studies in the Large Helical Device (LHD) [3], 

with an ion density ratio corresponding to Zeff=5.74, and 

the assumed temperatures are Te= Ti=1keV. With these 

assumptions, a dependence of the diffusion coefficients 

on the density in a range of ne 5 10
20

cm
3
 (up to the 

“SDC” [2] density regime) is investigated here. The mean 

free path of electron-electron collision is vTe ee=28.3m 

corresponding to the plateau regime even at 

ne=5 10
20

cm
3
. 
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Fig.1 The impurity (Ne
10+

) diffusion coefficients in  

(a) cases with energy scattering collision effects ei  j
ab

 

and without the radial electric filed (Er=0), (b) cases 

with both of the energy scattering collisions and a 

finite radial electric field of Er =5kV/m.  

The collisionless limit of ne=10
17

m
3
 in (a) coincides 

with the 13M approximation [8,9] without both effects. 

The particle species are denoted by e (a,b=e ), H 

(a,b=H
+
), and N (a,b=Ne

10+
) in these figures.  

 

 

Since Eq.(6) includes full non-diagonal coupling terms 

between particles species, there are 21 P-S diffusion 

coefficients even in this simple 2-ion-species model. We 

show here only coefficients relating to ion particle 

diffusions (i.e., a=H
+
, Ne

10+
 and b=e , H

+
, Ne

10+
), since a 

main application area of the P-S transport is the impurity 

transport studies in high-density operations. It is well 

known that neoclassical theory without the temperature 

gradient terms predicts a “pessimistic” impurity 

accumulation but the temperature gradient terms prevent 

it. Although the final goal of the impurity transport 

studies is determining the steady-state impurity density 

profile including not only a
PS

 but also the 

banana-plateau and ripple diffusion fluxes a
bn

 and the 
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classical diffusion fluxes a
cl
, such a calculation is 

complicated. We show here only comparison of the 

density gradient terms (LPS)11
ab

 and the temperature 

gradient terms (LPS)11
ab

+ (LPS)12
ab

 in a
PS

 as the 

component tests. In Fig.1(a) without the radial electric 

field (Er=0), we can see the effects of the energy 

scattering collisions by deviations from pure ne scaling 

given by the 13M-moment approximation in Refs.[8,9]. It 

enlarges the negative value of (L11HN+L12HN) and 

positive value of (L11NH+L12NH). It also reduces the 

positive value of L11HH at ne>10
20

m
3
. These are 

favorable tendencies in viewpoint of the impurity control. 

We can see also an increase and an invert of ion 

diffusions driven by electron temperature gradient in this 

high-density range, which indicate an importance of the 

electron temperature controls in for the impurity controls. 

The finite radial electric field effects with Er=5keV/m on 

these diffusion coefficients are only changes of order of 

unity as in Fig.1 (b) since Eqs.(1)-(3) make the P-S 

current independent of Er. Because of this characteristic 

the relative flow velocities between particle species 

u//a u//b determining the friction forces F//a1 are 

insensitive even when the absolute values of the flow 

velocities of individual species are largely changed by the 

E B term in Eq.(1). Nevertheless, there are 

non-negligible effects in view point of impurity density 

profiles determined by balances of temperature gradient 

terms and the density gradient terms. The aforementioned 

increases of (L11HN+L12HN) and (L11NH+L12NH) are 

enhanced by a radial electric field effect at ne~10^17m-3. 

The radial electric field effect at ne>10
20

m
3
 is 

complicated. These coefficients are reduced by the radial 

electric field at ne>10
20

m
3
 and thus the ion temperature 

gradient is not effective for the impurity control in this 

high density limit with finite radial electric fields. In this 

condition, controls of density and temperature profiles of 

the electron will be more important. 

 

4. Concluding Remarks 

   By adding this poloidally and toroidally varying part 

of the momentum equations to a previously formulation 

handling the flux-surface averaged part [5], the 

development of the “non-symmetric version of 

NCLASS” [12] based on the concept of “stellarator 

moment equation approach” toward a future integrated 

simulation system [14] is almost completed in viewpoint 

of the “basic framework”. (Although there are still many 

remaining technical problems on the viscosity 

coefficients in the flux-surface averaged part, this topic is 

discussed in another presentation in this conference 

P2-017). In non-symmetric configurations, a dependence 

of the P-S diffusions a
PS

, qa
PS

 and the accompanied na, 

Ta on the Er is predicted. Since a cause of this 

dependence on the Er is the viscous damping of the “rigid 

rotation”, it also should be noted that the basic idea of 

this theory is applicable to tokamaks with the rotation 

damping due to the symmetry-breaking by MHD 

activities, and so on [15]. It also should be noted that the 

plasma rotation assumed in Eq.(3), resulting density 

perturbations in Eqs.(1)-(2), and the assumed 

electro-static potential being a flux surface quantity are 

consistent with previous experimental results.[16-17] 
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