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It is shown in Large Helical Device experiments that the transport modeling based only on the fluid
description is not sufficient for expressing edge transport phenomena in a magnetic island. Existence of a
bootstrap current around the island is strongly suggested. On the other hand, in recent tokamak experiments
it is found that so-called stochastic diffusion theory based on the “field line diffusion” over estimates the
radial energy transport in the collisionless edge plasma affected by resonant magnetic perturbations, though the
perturbations induce a chaotic behavior in the field lines. These results imply that the conventional modeling
of the edge transport should be reconsidered for a lower-collisionality case. In order to take a new look at
the modeling of the edge transport, we investigate neoclassical effect on the transport in magnetic islands
and ergodic region. By using a drift kinetic equation solver without an assumption of existence of nested
flux surfaces (the KEATS code), it is possible for us to execute the investigation. The simulation results
show that the radial energy flux of ions for a lower-collisionality case is quite small compared to the predic-
tion of the stochastic diffusion theory, while the flux for a high-collisionality case is consistent with the prediction.
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1 Introduction
It is shown in Large Helical Device (LHD) experi-

ments that the transport modeling based only on the fluid
description is not sufficient for expressing edge transport
phenomena in a magnetic island [1, 2, 3]. This result is
given in the experiments of observing the healing of the
m/n = 1/1 magnetic island in the edge, where m and n are
the poloidal and toroidal mode numbers, respectively. A
current depending on the pressure gradient (i.e. the boot-
strap or Pfirsch-Schlüter current) is expected to explain the
healing in the experiments. In results of a simulation study
based on the fluid description [4], the healing phenomenon
is not explained by the Pfirsch-Schlüter current only. The
important role of a bootstrap current in the edge region is
strongly suggested, and thus the kinetic modeling of the
edge plasma is needed for understanding of the edge trans-
port phenomena, where in the LHD experiments the tem-
perature is &500 eV and the plasma density ∼ 1019 m−3 in
the island.

On the other hand, in recent tokamak experiments it
is found that so-called stochastic diffusion theory based
on the “field line diffusion” [5, 6] over estimates the ra-
dial energy transport in the edge region added resonant
magnetic perturbations (RMPs) [7, 8]. This fact is discov-
ered in the experiments of ELMs (edge localized modes)
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suppression by means of RMPs in collisionless tokamak
plasmas [7, 8]. (Historically, the idea of suppressing the
ELMs and controlling the edge transport by using RMPs
has been proposed about 20 years ago [9].) When the
RMPs induce a chaotic behavior in the field lines, the
stochastic diffusion theory predicts that a thermal diffusiv-
ity is given as χa

ql = χa
‖ |δBr/Bt|2 or va

thπRaxq|δBr/Bt|2 for
the collisional or collisionless limit, where a is a particle
species, χa

‖ = 3.91Taτa/ma the parallel diffusivity, Ta the
temperature, τa the collision time, ma the particle mass,
va

th the thermal velocity, Rax the major radius of the mag-
netic axis, q the safety factor, δBr the strength of RMPs,
and Bt the toroidal component of the magnetic field. This
prediction has been demonstrated in experiments on high-
collisional tokamak plasmas [10]. However, in collision-
less plasmas, the experimental thermal diffusivity χex is in-
consistent with the prediction of the stochastic diffusion
theory, e.g. χe

ql/χ
e
ex � 10 for the electron thermal diffu-

sivity [8]. Small RMPs cause the complete suppression of
the ELM events, and have a negligible effect on the energy
confinement.

The above experimental results in torus plasmas imply
that the conventional modeling of the edge transport should
be reconsidered for a lower-collisionality case. There is
no established theory describing radial transport in mag-
netic islands and ergodic region. In order to take a new
look at the modeling of the edge transport, we investigate
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neoclassical effect on the transport in magnetic islands and
ergodic region. Here, even in the three dimensional field
line structure disturbed by RMPs, the Coulomb collision
causes the transition between a passing particle orbit and a
trapped particle orbit in toroidal and helical ripples (local-
ized and/or blocked particle orbits) [11]; in the present pa-
per we call it the neoclassical effect on the edge transport
phenomena. Recently, we develop a new transport simu-
lation code without an assumption of existence of nested
flux surfaces; the code is named “KEATS” [12, 13]. The
code is programmed by expanding a well-known Monte-
Carlo particle simulation scheme based on the δ f method
[14, 15]. By using the KEATS code, it is possible for us to
execute the investigation. In this paper we show the simu-
lation results, applying the code to a torus plasma having
the ergodic region in the edge.

2 Simulation Model
We consider that a guiding center distribution func-

tion of plasma f is separated into an equilibrium-like
background f0 and a kinetic part δ f of the distribution,
f = f0 + δ f , where the kinetic part δ f is considered as
a small perturbation from f0. The zeroth-order distribu-
tion function f0 is given as a local Maxwellian distribution
f0 = fM(x, ξ, v) = n{m/(2πT )}3/2 exp{−mv2/(2T )}, where
ξ = v‖/v is the cosine of the pitch angle, v‖ = v · b,
b = B/B the unit vector along a field line, B a magnetic
field, B = |B|, v = |v|, n = n(x) the density, m the particle
mass, and T = T (x) the temperature. Applying the decom-
position f = fM + δ f to the drift kinetic equation, we have
the following equation of the kinetic part δ f :

D
Dt
δ f = − {vd · ∇ fM −CF fM} , (1)

where the operator D/Dt is defined as D/Dt := ∂/∂t +

(v‖ + vd) · ∇ −CT, v‖ = v‖b the parallel velocity, and vd the
drift velocity of guiding center motion. The test particle
collision operator CT is given, for simplicity, as

CT =
νdef

2
∂

∂ξ

(
1 − ξ2

) ∂

∂ξ
, (2)

and it can be implemented numerically by random kicks in
velocity space [16], which represents the Coulomb scatter-
ing process, where νdef is the deflection frequency. Here,
we should note statistical accuracy of the operator CT ex-
pressed by the Monte-Carlo method [16], in particular,
around |ξ| ≈ 1. The operator CF is the field particle colli-
sion term, which represents local momentum conservation
(CF is needed to treat accurately the parallel transport):

CF = νdef
m
T

v · u0, (3)

and u0 is given as

u0 =

∫
d3v νdef v δ f

/∫
d3v νdef

mv2

3T
fM. (4)

In general, effects of neutrals and an electric field are im-
portant in the edge transport, but in the present paper these
effects are neglected for simplicity. (The modeling of a
fluctuating field in the KEATS code is described in Refs.
[13, 17].)

To solve Eq. (1) by Monte-Carlo techniques, we adopt
the two-weight scheme of the δ f formulation [14, 15]. In
evolution of the δ f part, the background fM is assumed to
be fixed because the background is in a quasi steady-state
from the viewpoint of the δ f part. The Monte-Carlo sim-
ulation code, KEATS, is programmed in an Eulerian co-
ordinate system, i.e. so-called helical coordinates [4], thus
the code does not need magnetic flux coordinates. Simula-
tion results (e.g. estimation of particle and energy fluxes)
of the KEATS code for a case of a simple tokamak field are
agreed with ones of the “FORTEC-3D” code [15] which
uses magnetic flux coordinates.

3 Simulation Results

For the investigation of neoclassical effect on the trans-
port in the ergodic region, we use a magnetic configuration
which is formed by adding RMPs into a simple tokamak
field having concentric circular flux surfaces, where the
major radius of the magnetic axis Rax = 3.6 m, the mi-
nor radius of the plasma a = 1 m, and the magnetic field
strength on the axis Bax = 4 T. The Poincaré plots of the
magnetic field lines on a poloidal cross section are shown
in Fig.1. One can see the ergodic region in r/a = 0.7 ∼ 1,
where r =

√
(R − Rax)2 + Z2. In the KEATS code, the

number of test particles is NTP = 16, 000, 000.
To investigate effect of the existence of the ergodic

region on the transport phenomena, we evaluate the ion
energy flux Qi in two cases, i.e., in the configurations (a)
having lower edge temperature Tedge ∼ 200 eV at a center
of the ergodic region and (b) having higher edge temper-
ature Tedge ∼ 1 keV. The temperature profile is given as
Ti = Tax{0.02 + 0.98 exp[−4(r/a)α]} with Tax = 2 keV and
α = 2.5 (case (a)) or 7.86 (case (b)), which neglects the
existence of the ergodic region. The density profile is set
homogeneous, ni = const. = 1×1019 m−3. The background
fM is fixed in the calculations. The radial profiles of the en-
ergy flux estimated from the KEATS computations for two
cases (a) and (b) are shown in Figs.2a and b, respectively.
For simplicity, the radial energy fluxes are given neglect-
ing the existence of the ergodic region, because we have
no magnetic coordinate system including several magnetic
field structures as the core and ergodic regions. The energy
flux Qi is averaged over concentric circular shell region in
the whole toroidal angles as if there were nested flux sur-
faces. Here, in the KEATS computations the energy flux Q
is given as

Q(t, x) =

∫
d3v

mv2

2
(v‖ + vd)δ f , (5)
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Fig. 1 Poincaré plots of magnetic field lines on a poloidal cross
section.

where · · · means the time-average, and the averaging time
is longer than the typical time-scale of δ f . The heat flux
predicted by the stochastic diffusion theory is given as
qql = nχql∇T . From the results of the KEATS code, we
find that the ion energy flux is affected by the RMPs, but
the flux in the lower-collisionality region around r/a ≈ 0.8
is quite small compared with the prediction of the stochas-
tic diffusion theory, shown in both cases (a) and (b). On
the other hand, in the high-collisionality region around
r/a ≈ 1, the flux is consistent with the prediction. These
results can be explained theoretically, see Appendix.

4 Summary

We have been developing the neoclassical transport
code, KEATS, to study the transport phenomena in the
islands and ergodic region. We apply the code to the
edge disturbed by resonant magnetic perturbations, and
find that the ion energy flux estimated by the KEATS
code for a lower-collisionality case is quite small com-
pared to the prediction of the stochastic diffusion theory
based on the “field line diffusion,” while the flux for a high-
collisionality case is consistent with the prediction.
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Fig. 2 Radial profiles of ion energy/heat flux for (a) lower
and (b) higher edge temperatures, where r =√

(R − Rax)2 + Z2. The collisionless (or collisional) quasi-
linear (QL) model means the prediction of the stochastic
diffusion theory for the collisionless (or collisional) case.

Appendix. Stochastic Analysis of Ra-
dial Transport in a Perturbed Field

A fluid equation in a steady-state corresponds to
a stochastic differential equation described as dX i

t =

γU i(Xt)dt + ci
j(Xt)dW j

t and i, j = 1, 2, 3 [18, 19], where
γ is a constant (e.g. γ = 5n/2 for the heat balance equa-
tion if n = const.), U = (U1,U2,U3) a flow in a steady-
state, Di j = ci

kgk`c j
`

a diffusion coefficient, gk` a met-
ric coefficient, Xt = (X1

t , X
2
t , X

3
t ) a diffusion process, and

Wt = (W1
t ,W

2
t ,W

3
t ) a Brownian process. It is assumed that

a fluid is exposed to noise caused by resonant magnetic
perturbations (RMPs), and that a fluid particle motion is
described by an Itô process dY i

t = γŨ i(t, ω)dt + ci
j(Yt)dW j

t
instead of the process Xt, where the flow is represented
as Ũ(t, ω) = U(Yt) + “noise”, ω is a label of a fluid
particle, “noise” is a random function having zero mean
and finite strength, and the definition of an Itô process is
given in Ref. [20]. It is known that an Itô process Y t co-
incides in law with a diffusion process Xt if and only if
Ex0 [Ũ(t, ω)|PY

t ] = U(Yt) [20], where X0 = Y0 = x0 is a
starting point of a fluid particle at t = 0, PY

t is the σ-algebra
generated by the set {Y s; 0 ≤ s ≤ t}, and Ex0 [· · · |PY

t ] de-
notes the conditional expectation with respect to PY

t . This
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theorem means that the “noise” cannot cause the diffusion
of fluid particles. We should reconsider the reason why the
noise created by RMPs can affect the transport.

Let us take the following collision operator:

C( f ) = νcol
∂

∂u
·
{

u f + v2
th
∂ f
∂u

}
, (A.1)

where νcol = νcol(x) is the collision frequency, vth the ther-
mal velocity, and v = U+u the velocity of a guiding center,
and U = U(x) the mean velocity [21]. The operator (A.1)
is simpler, but is used only to get a rough idea of colli-
sional effects [22]. We consider the motion of a guiding
center along a field line for estimation of radial spreading
the guiding centers by their parallel motions in a perturbed
magnetic field. The guiding center motion exposed to the
collisions (A.1) is given as an Ornstein-Uhlenbeck process:

dx = vdt = (U + u)dt, (A.2)

du = −νcoludt + σdW‖t, (A.3)

where U = U‖b, u = u‖b, σ = vth
√
νcol, W‖t a Brownian

process for the parallel direction, i.e. dW‖t = bdWt, and
b = B/B the unit vector along a field line. Here, the effects
of ripples are neglected for simplicity. The solutions of
Eqs. (A.2) and (A.3) are described respectively as

x = x0 +

∫ t

0
(U + u)ds, (A.4)

u = e−νcoltu0 +

∫ t

0
e−νcol(t−s)σdW‖s, (A.5)

where x0 and u0 are the initial values at t = 0.
One may consider that effect of a perturbation field

on the motion is interpreted as noise on the motion. If the
effect is expressed by a linear operator ṽ = Ñv, then

dx = (v + ṽ)dt = (v + Ñv)dt. (A.6)

The solution of Eq. (A.6) is given as

x = x0 +

∫ t

0
(1 + Ñ)

{
U + e−νcolsu0

}
ds

+

∫ t

0
ds

∫ s

0
e−νcol(s−h)σ(1 + Ñ)dW‖h. (A.7)

For the collisional limit t � 1/νcol, the diffusion (caused
by the perturbation field) in configuration space is derived
from Eq. (A.7):

dx ≈ (1 + Ñ)Udt +
vth√
νcol

(1 + Ñ)dW‖t, (A.8)

i.e., for the collisional limit the diffusion in velocity space
directly becomes the diffusion in configuration space. We
should note that the diffusion in configuration space orig-
inates from the collisions in velocity space. When the
RMPs are added to the original magnetic field having
nested flux surfaces, the parallel motion of a guiding center
may cause radial fluctuation in configuration space [5, 6].
If the noise ṽ = (ṽ1, ṽ2, ṽ3) is given as

ṽi = (Ñv)i =

∣∣∣∣∣
δBr

Bt

∣∣∣∣∣
εi jk

√
g
θ̂ jvk φ̃(t, i), (A.9)

then the radial diffusivity Dr = D‖|δBr/Bt|2 is obtained in
the fluid equations given from the drift kinetic equation
having the collisions (A.1) for the collisional limit, where θ̂
is the unit vector for the poloidal direction, δBr the strength
of the RMPs satisfying |δBr/Bt| � 1, Bt the toroidal com-
ponent of B, g = det

(
gi j

)
the square of Jacobian, εi jk

the Levi-Civita symbol, φ̃(t, i) the ith component of a zero
mean random vector having the mean square of E

[
φ̃2

]
= 1

and being independent of dW‖t, and D‖ = v2
th/νcol the paral-

lel diffusivity. We should note that the noise term Ñ(U+u0)
cannot cause diffusion, as shown in the first paragraph in
this section; see also Refs. [13, 17, 20].

The above discussion shows that for a high-collisional
plasma (the characteristic time t � 1/νcol), the guid-
ing center motions become close to the prediction of the
stochastic diffusion theory based on the “field line diffu-
sion” [5, 6]. On the other hand, for a lower-collisionality
plasma (t . 1/νcol), the motions are not interpreted as the
diffusion process predicted by the stochastic diffusion the-
ory. These consequences are consistent with the results
shown in Fig. 2 and also ones obtained in the test particle
simulations [23].
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