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NEO-2 is a code for the computation of neoclassical transpogficients and current drivefigciency
in toroidal devices which is based on the field line integmatiechnique. The possibility to use the complete
linearized collision integral is realized in this code. histreport the results of comparison of the full matrix
of transport cofficients in a tokamak with analytical models are presentefiecis of simplifications of the
linearized collision model (e.g., reduction to a Lorentzd®kp are studied in order to provide a comparison with
various momentum correction techniques used for the caatipatof transport cdéicients in stellarators.
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Accurate computations of transport ¢baents, boot-
strap current and the generalized Spitzer function in toka-
maks and stellarators is an important problem for stellara-
tor optimization, generation of neoclassical data bases, a
modeling of current drive. Based on the field line integra-
tion technique [1], the code NEO-2 has been developed for
this purpose [2, 3]. This code solves the linearized drift ki
netic equation in regimes where theet of electric field
on transport and bootstrap dheients is negligible. Re-
cently this code has been upgraded for computations of
the full transport matrix and the possibility of treatment
of magnetic fields in Boozer coordinates has been realized
in addition to magnetic fields in real space coordinates. In
the following, a comparison of NEO-2 results with results
of analytical theory for tokamak are presented. Transport
codficients are computed here only for the electron com-
ponent assuming the ions to be immobile.

Approximating the energy dependence of the pertur-
bation of the distribution function by the expansion over a
finite number of test functions,
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where fo(y, V) is the Maxwellian and.&/? are associated
Laguerre polynomials (Sonine polynomials) of the order
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3/2, the linearized drift kinetic equation (DKE) is trans-
formed to a set of coupled two dimensionatfeiential
equations,
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and the integral part of the linearized collision operator

1< 1 ,
Ko B = 7 D Ve PD [ QPUN) T (08.0) (4)
=0 -

where P, are Legendre polynomials. Herg, is a flux
surface labels is the distance counted along the m.f.l.,
A = vy/v is pitch, o is the sign ofvj, = (1 - 19)/B

is the normalized perpendicular invariant (magnetic mo-
ment),B = B/By is the magnetic field module normalized
to a reference magnetic fiek} which is equal to (00) har-
monic of magnetic field expansion in Boozer coordinates,
Bo = (B®)/(B?), k = 2/l with | = vr7ee being the mean
free pathp = vr/we, Vv = (2Te/Me)Y/?, we = €By/mec and

Tee = 3MRV3/ (16\/Enee4/\) are electron Larmor radius,
thermal velocity, cyclotron frequency and collision time,
respectively, and. ..) means the average over the volume
between two neighboring magnetic surfaces (flux surface
average). The quantiti®gny, Imn» Dmm andaﬂ? are ma-

trix elements independent of plasma parameters, whereas
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the quantitied\ are the thermodynamic forces defined as,
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The source termgZ andqZ with drives by gradients and by
parallel electric field, respectively, are defined as fopw
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wherekg is the geodesic curvature.

Equations (2) are discretized over theariable on an
adaptive non-equidistant grid and the resulting set of cou-
pled ordinary diferential equations is solved with help of
integration along the field lines. In particular, all ne@gs
flux surface averages are computed during this integration
as follows,
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As a result of computation, one obtains the matrix of trans-
port codficients Liej defined through the thermodynamic
forcesA; and thermodynamic fluxdsgvia
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wherel; = T, I = Qe/Te andls = (j;B)/e. Herel,
andQ. are average particle and heat flux densities defined
as total particle and heat fluxes divided by the flux surface
area and is parallel electron current density.

Symmetric matrix Liej is conveniently expressed
through dimensionless cfiientsy;; which depend only
on the device geometry, the mean free gatmd dfective
charge numbeZ as follows, Lij; = ngyijBi8j/Tee Where
B1 = B2 = p andps = l.. For this purpose solution to (2)
is formally presented as a superposition of thermodynamic
forces,
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Theny;; are determined by normalized solutions for single
drive problems,fr‘Tf’('), as follows
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whereq] = ¢ = ¢, of = 0, a1 = a2 = l(Vy)™,
a3 = 1 and numerical cdﬁcientsbﬂ? are, again, indepen-
dent of problem parameters. With help of thesefioients
the quantitydyy, [3] is expressed ag = 2y3;.
It should be noted that matriceﬁ andy;; correspond
to the dfective radius s used as a radial variable where
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dreg = dV/S, Vis a volume limited by a flux surface aisd

is a flux surface area. In order to obtain these matrices for
different definitions of plasma radius, e.g. for the radius
defined via the toroidal flux,, = (2y/Boo)"/?, coeficients

a1 anda; should be multiplied with g, /dr .

For the large aspect ratio tokamak with circular flux
surfaces cofiicients y;; computed by NEO-2 are com-
pared to the analytical results of Refs. [4, 5, 6]. In par-
ticular, dimensionless transport ¢beients for the Hin-
ton and Hazeltine model [4ly;", are given byy;" =
KijqPe; */*Zeg for i, j = 1,2, = Kijqe 2/2 fori = 1,2
andj=3ori=3andj=1,2,
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and matrixK;; is defined by Egs. (6.125) and (6.126) of
Ref. [4]. Hereq is safety factor and; = r/R s the in-
verse aspect ratio. The results of the comparison are pre-
sented in Figs. 1 through 6 far = 1/q = 0.362 and

& = 0.075. The results of NEO-2 are computed with asso-
ciated Laguerre polynomials up to forth order and Legen-
dre polynomials up to third order. For all d&ieients the
dependence on collisionality as well Ag; is well repro-
duced. The main dlierences come from the finite toroidic-
ity. Whereas NEO-2 does not assume smallness of the
magnetic field modulation, theoretical approximations are
based on the expansion owgr It should be noted that in
NEO-2 all nine transport cdiécients are computed inde-
pendently and Onsager symmetry of thesefiogents is
used for the control of the computation accuracy which
improves with both, grid resolution and (mainly) num-
ber of Laguerre polynomials in modeling energy depen-
dence. For the present computation violation of symme-
triesyis = ys1 andy,3 = y32 is around 1% and violation of
symmetryyio = y,1 is around 10%.

Beside the full linearized collision operator, two dif-
ferent model operators are used in Figs. 7 through 9,
namely, the mono-energetic collision model and mono-
energetic collision model with momentum recovery. Last
two models are obtained by putting in @y = 1L, =0
or only Dmy = O, respectively. In particular, the mono-
energetic model here corresponds to the most common
mono-energetic approach where transporttiocents are
given by the convolution over energy of the results for
the Lorentz model. It can be seen that mono-energetic
model overestimates particlefision codficienty;; while
mono-energetic model with momentum recovery underes-
timates this coicient as compared to the full linearized
collision model. The bootstrap cfiient y31, in turn,
is underestimated by the mono-energetic model while the
mono-energetic model with momentum recovery overes-
timates it. Finally, conductivity cdicient is well re-
produced by the mono-energetic model while the mono-
energetic model with momentum recovery significantly
overestimates it. Dierences between all three models are
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Fig. 1 Results of NEO-2 with full linearized collision opéva

(F) and analytical models of Ref. [4] (HH) and Refs. [5,
6] (AS) for the dimensionless filusion codicienty,; at
three values of theffective charg&yg.

naturally reduced with highefss. Currently NEO-2 has
been and is being used for the benchmarking of various
methods for the computation of mono-energetic transport
codficients and bootstrap cfieient [7,8] as well as mo-
mentum correction techniques [9].
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Fig. 2 The same as in Fig.1 foi,.

Fig. 3 The same as in Fig.1 fog,.

Fig. 4 The same as in Fig.1 fgs;.
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Fig. 6 The same as in Fig.1 fefyss.
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Fig. 7 Dimensionless particle filision codicient y,; for the
full linearized collision operator (F), mono-energetic ap
proach (L) and mono-energetic approach with momen-
tum recovery (M).

Fig. 8 The same as in Fig. 7 for the bootstrapfioentys;;
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Fig. 9 The same as in Fig. 7 for the conductivity fitment—ys3



