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NEO-2 is a code for the computation of neoclassical transport coefficients and current drive efficiency
in toroidal devices which is based on the field line integration technique. The possibility to use the complete
linearized collision integral is realized in this code. In this report the results of comparison of the full matrix
of transport coefficients in a tokamak with analytical models are presented. Effects of simplifications of the
linearized collision model (e.g., reduction to a Lorentz model) are studied in order to provide a comparison with
various momentum correction techniques used for the computation of transport coefficients in stellarators.
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Accurate computations of transport coefficients, boot-
strap current and the generalized Spitzer function in toka-
maks and stellarators is an important problem for stellara-
tor optimization, generation of neoclassical data bases, and
modeling of current drive. Based on the field line integra-
tion technique [1], the code NEO-2 has been developed for
this purpose [2, 3]. This code solves the linearized drift ki-
netic equation in regimes where the effect of electric field
on transport and bootstrap coefficients is negligible. Re-
cently this code has been upgraded for computations of
the full transport matrix and the possibility of treatment
of magnetic fields in Boozer coordinates has been realized
in addition to magnetic fields in real space coordinates. In
the following, a comparison of NEO-2 results with results
of analytical theory for tokamak are presented. Transport
coefficients are computed here only for the electron com-
ponent assuming the ions to be immobile.

Approximating the energy dependence of the pertur-
bation of the distribution function by the expansion over a
finite number of test functions,

δ f (ψ, s, v, λ) ≈ f0(ψ, v)
M
∑

m=0

fm(ψ, s, λ)ϕm(v/vT) , (1)
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m (x2) ,

where f0(ψ, v) is the Maxwellian andL(3/2)
m are associated

Laguerre polynomials (Sonine polynomials) of the order
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3/2, the linearized drift kinetic equation (DKE) is trans-
formed to a set of coupled two dimensional differential
equations,
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with the pitch-angle scattering operator
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and the integral part of the linearized collision operator

Kmm′ f
σ
m′ =

1
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L
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ℓ=0

I ℓmm′Pℓ(λ)
∫ 1
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dλ′Pℓ(λ

′) f σ
′
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′) , (4)

where Pℓ are Legendre polynomials. Here,ψ is a flux
surface label,s is the distance counted along the m.f.l.,
λ = v‖/v is pitch, σ is the sign ofv‖, η = (1 − λ2)/B̂
is the normalized perpendicular invariant (magnetic mo-
ment),B̂ = B/B0 is the magnetic field module normalized
to a reference magnetic fieldB0 which is equal to (0, 0) har-
monic of magnetic field expansion in Boozer coordinates,
B0 = 〈B3〉/〈B2〉, κ = 2/lc with lc = vTτee being the mean
free path,ρ = vT/ωc, vT = (2Te/me)1/2,ωc = eB0/mec and
τee = 3m2

ev3
T/

(

16
√
πnee4Λ

)

are electron Larmor radius,
thermal velocity, cyclotron frequency and collision time,
respectively, and〈. . .〉 means the average over the volume
between two neighboring magnetic surfaces (flux surface
average). The quantitiesνmm′ , Imm′ , Dmm′ anda(i)

m are ma-
trix elements independent of plasma parameters, whereas
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the quantitiesAi are the thermodynamic forces defined as,
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. (5)

The source termsqσG andqσE with drives by gradients and by
parallel electric field, respectively, are defined as follows,

qσG =
∂

∂η

(

|λ|
B̂

V̂G

)

, qσE = σB̂,

V̂G =
1
3

(

4

B̂
− η

)

|∇ψ|kG, (6)

wherekG is the geodesic curvature.
Equations (2) are discretized over theη variable on an

adaptive non-equidistant grid and the resulting set of cou-
pled ordinary differential equations is solved with help of
integration along the field lines. In particular, all necessary
flux surface averages are computed during this integration
as follows,

〈α〉
〈β〉 = lim

L→∞

∫ L

0

ds
B
α /

∫ L

0

ds
B
β . (7)

As a result of computation, one obtains the matrix of trans-
port coefficients Le

i j defined through the thermodynamic
forcesAj and thermodynamic fluxesI i via

I i = −
3

∑

j=1

Le
i j Aj , (8)

where I1 = Γe, I2 = Qe/Te and I3 = 〈 j‖B̂〉/e. HereΓe

andQe are average particle and heat flux densities defined
as total particle and heat fluxes divided by the flux surface
area andj‖ is parallel electron current density.

Symmetric matrix Le
i j is conveniently expressed

through dimensionless coefficientsγi j which depend only
on the device geometry, the mean free pathlc and effective
charge numberZ as follows,Li j = neγi jβiβ j/τee, where
β1 = β2 = ρ andβ3 = lc. For this purpose solution to (2)
is formally presented as a superposition of thermodynamic
forces,
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ρ
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(
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m + A2 f̂ σ,(2)

m

)

+ A3 f̂ σ,(3)
m . (9)

Thenγi j are determined by normalized solutions for single
drive problems,f̂ σ,(i)m , as follows

γi j =
αiα j
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∑

m
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whereqσ1 = qσ2 = qσG, qσ3 = qσE, α1 = α2 = lc〈|∇ψ|〉−1,

α3 = 1 and numerical coefficientsb(i)
m are, again, indepen-

dent of problem parameters. With help of these coefficients
the quantityλbb [3] is expressed asλbb = 2γ31.

It should be noted that matricesLe
i j andγi j correspond

to the effective radiusreff used as a radial variable where

dreff = dV/S, V is a volume limited by a flux surface andS
is a flux surface area. In order to obtain these matrices for
different definitions of plasma radius, e.g. for the radius
defined via the toroidal flux,rψ = (2ψ/B00)

1/2, coefficients
α1 andα2 should be multiplied with drψ/dreff.

For the large aspect ratio tokamak with circular flux
surfaces coefficients γi j computed by NEO-2 are com-
pared to the analytical results of Refs. [4, 5, 6]. In par-
ticular, dimensionless transport coefficients for the Hin-
ton and Hazeltine model [4],γHH

i j , are given byγHH
i j =

Ki j q2ǫ
−3/2
t Zeff for i, j = 1, 2, γHH

i j = Ki j qǫ
−1/2
t /2 for i = 1, 2

and j = 3 or i = 3 and j = 1, 2,

γHH
33 =

K33ǫ
1/2
t − 1

2Zeff

(

0.29+ 0.46(1.08+ Zeff)
−1

) (11)

and matrixKi j is defined by Eqs. (6.125) and (6.126) of
Ref. [4]. Hereq is safety factor andǫt = r/R is the in-
verse aspect ratio. The results of the comparison are pre-
sented in Figs. 1 through 6 forι = 1/q = 0.362 and
ǫt = 0.075. The results of NEO-2 are computed with asso-
ciated Laguerre polynomials up to forth order and Legen-
dre polynomials up to third order. For all coefficients the
dependence on collisionality as well asZeff is well repro-
duced. The main differences come from the finite toroidic-
ity. Whereas NEO-2 does not assume smallness of the
magnetic field modulation, theoretical approximations are
based on the expansion overǫt. It should be noted that in
NEO-2 all nine transport coefficients are computed inde-
pendently and Onsager symmetry of these coefficients is
used for the control of the computation accuracy which
improves with both, grid resolution and (mainly) num-
ber of Laguerre polynomials in modeling energy depen-
dence. For the present computation violation of symme-
triesγ13 = γ31 andγ23 = γ32 is around 1% and violation of
symmetryγ12 = γ21 is around 10%.

Beside the full linearized collision operator, two dif-
ferent model operators are used in Figs. 7 through 9,
namely, the mono-energetic collision model and mono-
energetic collision model with momentum recovery. Last
two models are obtained by putting in (2)Dmm′ = I ℓmm′ = 0
or only Dmm′ = 0, respectively. In particular, the mono-
energetic model here corresponds to the most common
mono-energetic approach where transport coefficients are
given by the convolution over energy of the results for
the Lorentz model. It can be seen that mono-energetic
model overestimates particle diffusion coefficientγ11 while
mono-energetic model with momentum recovery underes-
timates this coefficient as compared to the full linearized
collision model. The bootstrap coefficient γ31, in turn,
is underestimated by the mono-energetic model while the
mono-energetic model with momentum recovery overes-
timates it. Finally, conductivity coefficient is well re-
produced by the mono-energetic model while the mono-
energetic model with momentum recovery significantly
overestimates it. Differences between all three models are
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Fig. 1 Results of NEO-2 with full linearized collision operator
(F) and analytical models of Ref. [4] (HH) and Refs. [5,
6] (AS) for the dimensionless diffusion coefficientγ11 at
three values of the effective chargeZeff .

naturally reduced with higherZeff . Currently NEO-2 has
been and is being used for the benchmarking of various
methods for the computation of mono-energetic transport
coefficients and bootstrap coefficient [7,8] as well as mo-
mentum correction techniques [9].
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Fig. 2 The same as in Fig.1 forγ12.

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
1

10
2

10
3

10
4

L
c
/l

c

γ 22

 

 
F: Z

eff
=1

HH
AS
F: Z

eff
=2

HH
AS
F: Z

eff
=4

HH
AS

Fig. 3 The same as in Fig.1 forγ22.
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Fig. 4 The same as in Fig.1 forγ31.
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Fig. 5 The same as in Fig.1 forγ32.

10
−8

10
−6

10
−4

10
−2

10
0

10
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
c
/l

c

γ 33

 

 
F: Z

eff
=1

HH
AS
F: Z

eff
=2

HH
AS
F: Z

eff
=4

HH
AS

Fig. 6 The same as in Fig.1 for−γ33.
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Fig. 7 Dimensionless particle diffusion coefficient γ11 for the
full linearized collision operator (F), mono-energetic ap-
proach (L) and mono-energetic approach with momen-
tum recovery (M).
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Fig. 8 The same as in Fig. 7 for the bootstrap coefficientγ31
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Fig. 9 The same as in Fig. 7 for the conductivity coefficient−γ33


