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Development of non-local neoclassical transport code for helical
configurations
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The progress in 3-dimensional, non-local neoclassical transport simulation code “FORTEC-3D” is described.
The main purpose of the code is to solve the drift-kinetic equation in general 3-dimensional configuration using
theδ f Monte-Carlo method, and to calculate neoclassical fluxes and the time evolution of the ambipolar radial
electric field simultaneously. In this article, we explain the new numerical schemes adopted for FORTEC-3D in
order to overcome problems happened especially in the cases where the bifurcation of radial electric field occurs.
Examples of test simulation for a LHD magnetic field configuration with bifurcated electric field are also shown.
With improved numerical schemes, FORTEC-3D can calculate neoclassical fluxes and trace the time evolution
stably as long as several ion collision times, which is long enough to observe GAM damping and transition of
the ambipolar electric field.
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1 Introduction

Detailed calculation of neoclassical transport in 3-
dimensional configuration plasmas such as LHD is impor-
tant for transport analysis, since in a 3-dimensional sys-
tem the ambipolar conditionΓi(ρ,E) = Γe(ρ,E) deter-
mines the radial electric field profileE(ρ), whereΓi and
Γe are ion and electron particle fluxes across the flux sur-
faceρ = const. It is known that the ambipolar condition
is mainly determined by neoclassical transport. If the am-
bipolar condition has multiple roots, bifurcation of radial
electric field profile occurs.[1] In LHD plasmas, appear-
ance of positive electric field, or the “electron root”, is
preferable since it reduces neoclassical transport compared
with that in negative one, or the “ion root”.[2] Moreover,
strong sheared electric field profile at the bifurcation point
is generally considered to be favorable from the viewpoint
of suppression of anomalous transport.

Neoclassical transport theory for 3-dimensional heli-
cal configuration[3, 4] has been constructed under the as-
sumption of local transport model where the typical or-
bit width in the minor-radius direction is assumed to be
negligible compared with the background gradient scale
lengths of a plasma. Recently non-local effects, or finite-
orbit-width (FOW) effects, on neoclassical transport have
attracted attention in the analysis of core transport in toka-
maks, where particle orbits with large widths break the as-
sumption of conventional neoclassical theory.[5, 6] In he-
lical configurations, the deeply ripple-trapped and transi-
tion particles show large deviation in radial direction. The
FOW effect of these orbits will be important in neoclas-
sical transport analysis if the collisionality becomes quite
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low. The presence of strong-sheared electric field will also
brings the non-local effect to neoclassical transport. How-
ever, the applicability of analytic neoclassical theory to
these situations is questionable since it neglects the FOW
effect from the beginning.

From the considerations above, we have been devel-
oping a simulation code to solve the drift-kinetic equation
(DKE) including the FOW effect in 3-dimensional config-
uration. The simulation code, FORTEC-3D,[7, 8] uses the
δ f Monte-Carlo method[9, 10] which has been applied to
some other transport codes both for tokamaks[11] and for
helical configurations.[12, 13] The features of FORTEC-
3D are : (1) It uses a conserved-form linearized Fokker-
Planck collision operator. (2) It is a global simulation. The
entire confinement region is solved at once. (3) Time evo-
lution of radial electric field is solved simultaneously. The
ambipolar electric field is then determined in consistency
with neoclassical fluxes. (4) To reduce calculation time,
only the ion transport is solved by theδ f method, and
electron transport is solved by GSRAKE code[14] which
solves bounce-averaged DKE. Note that GSRAKE solu-
tion does not include the FOW effect, and then only the
non-local effect for ions transport is treated in FORTEC-
3D.

So far, FORTEC-3D has successfully applied for LHD
configurations to solve the formation of ambipolar field
for ion roots,[7] and to study the configuration dependence
of GAM oscillation and damping[8]. However, from sev-
eral test calculations we found that it was difficult to apply
FORTEC-3D to the cases with electron roots, since bifur-
cated radial electric field profile became unphysical shape
as shown later. We also found that numerical noise in par-
ticle flux and numerical error in collision operator were in-
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tolerably large, which had not found in tokamak cases. We
ascertained the cause of these problems were from inac-
curacy in radial grids for evaluating flux and electric field,
and from the emergence of huge-weight markers.

In this paper, improvements for numerical schemes in
FORTEC-3D recently applied to overcome the problems
above are explained. In section 2, basic equations forδ f
Monte-Carlo method are reviewed. In section 3, modifi-
cation to collision operator is described. The new opera-
tor has good conservation property with less marker num-
bers. In section 4, improvement in the evaluation of flux
and electric field are explained. Adoption of staggered-
mesh in radial direction to evaluate these two quantities
makes it possible to simulate the formation of bifurcated
radial electric field profile stably. In section 5, new filtering
scheme for marker weights to reduce numerical noise is in-
troduced. By comparing several tests with varied strength
of filters, it is shown that the filtering scheme does not af-
fect the solutions. By these improvements, now FORTEC-
3D is ready to solve neoclassical transport in helical plas-
mas in varied profiles and simulate evolution of electric
field including bifurcations.

2 Basic equations of theδ f method

In the δ f method, time development of the perturbation
of plasma distribution function from the local Maxwellian
δ f = f − fM is solved according to the DKE

Dδ f
Dt

≡ ∂δ f
∂ t

+
(

v‖+vd

)
·∇δ f −Ct p(δ f )

= −vd ·∇ fM +P fM, (1)

whereCt p andP are test-particle and field-particle parts
of linearized collision operator. The magnetic field is
given in the Boozer coordinate system(ψ,θ ,ζ )[15] as
B = ∇ψ ×∇θ + ι∇ζ ×∇ψ. Practically, we useρ for a
normalized radial coordinate defined from toroidal fluxψ
asρ =

√
ψ/ψout. A MHD equilibrium magnetic field is

constructed from the VMEC code[16]. The time evolution
of radial electric fieldE =−dΦ/dρ∇ρ = Eρ ∇ρ is solved
from the following equation

ε0ε⊥
∂Eρ

∂ t
=−e[ziΓi −Γe] , (2)

where subscriptsi andedescribe particle species, andε⊥≡[〈|∇ρ |2〉+
〈
c2|∇ρ |2〉/v2

A

]
.

To solve eq. (1), two weights,w andp, are introduced
which satisfy the relationswg= δ f and pg= fM, respec-
tively, whereg is 5-dimensional simulation marker distri-
bution function. Since the time evolution of marker distri-
bution is given byDg/Dt = 0, we obtain

dw
dt

=
p
fM

[−vd ·∇+P
]

fM, (3a)

dp
dt

=
p
fM

vd ·∇ fM. (3b)

The numerical procedures for the collision operator and for
eq. (2) are described in the following sections.

3 Collision operator

The linearized Fokker-Planck operator in FORTEC-3D is
made to satisfy the following relations,

∫
d3vM

(
Ct p(δ f )+P fM

)
= 0 for M = {1,v‖,v

2}, (4)

Ct p(δ f )+P fM = 0 for δ f = (c0 +c1 ·v+c2v2) fM. (5)

The test-particle operatorCt p is expressed by random scat-
tering in the(v‖,v⊥)-space. The field-particle operator is
given as follows

P = a

[
1−3

√
π
2

(φ −φ ′)x−1/2
]

δn

+ bv‖x
−3/2φδP+cx−1/2(φ −φ ′)δE, (6)

wherex≡ v2/v2
th, φ(x) is the error function, and

{δn,δP,δE}=
∫

d3v
{

1,v‖,v
2
}

Ct p(δ f ) (7)

are changes in constants-of-motions byCt p only. Previ-
ously, the relation (3b) has been used to determine con-
stants(a,b,c) = (1/n,2/nvth,2/3nvth). However, it was
found that the numerical error in the conservation low (4)
became larger as the numerical noisefM − pg became
larger. The numerical error is significant in 3-D helical
configuration cases compared with 2-D cases, because in
3-D cases it is difficult to keep enough marker population
in a unit volume as in 2-D cases, and the marker distri-
bution g is distorted in the velocity space in the presence
of ripple-trapped particles. In the improved version, we
do not use (3b) any more to makeP fM, but the factors
(a,b,c) are determined at every moment of collision so
that the conservation low is strictly satisfied. In fig. 1,
the residual relative error in momentum and energy arisen
at one operation ofCt p +P fM are compared between old
and newP fM for several tests with varied marker num-
bers. For previous operator, the numerical error is larger
for fewer marker case. However, the error in new operator
is just the rounding-error level even in the 1600-markers
calculation. We have also confirmed the other property of
collision operator (5) is also kept in the new operator.

4 Radial meshes

The relation between neoclassical fluxes and radial electric
field (2) is solved on discrete meshes in theρ-coordinate.
Γi is evaluated by the volume averaged value betweeni-th
andi +1-th meshes as follows

Γi(ρi+ 1
2
) =

1
∆Vi+1/2

∫

∆Vi+1/2

d3x
∫

d3vρ̇δ f

=
1

∆Vi+1/2
∑

{k|ρi≤ρk<ρi+1}
wkρ̇kC(ρk, i), (8)



Proceedings of ITC/ISHW2007

-16

-14

-12

-10

-8

-6

-16 -14 -12 -10 -8 -6 -4

R
es

id
ua

l e
rr

 in
 e

ne
rg

y 
(lo

g)

�

Residual err in moment (log)

n=64000,old
n=16000,old

n=4000,old
n=1600,old

n=64000,new
n=1600,new

Fig. 1 Relative error in momentum and energy in one opera-
tion of Ct p + P fM . The time interval for the operation
is taken∆t = 2×10−3τii .

wherek is the marker index, andC(ρk, i) is a shaping factor
of a marker.[17] For electron flux GSRAKE solution is re-
ferred to : Γe(ρi+1/2) = Γe(ρi+1/2,Eρ(ρi+1/2, t))

GSRAKE .
Previously, the electric field and fluxes were evaluated on
the same pointsρ = ρi+1/2 according to eq. (2). It is il-
lustrated in Fig. 2. However, using this scheme, we found
that the electric field profile fell into an unphysical shape as
shown in Fig. 3, where multiple roots for ambipolar con-
dition are expected from GSRAKE solutions. This is be-
cause all three values in eq. (2) were evaluated on the same
position, that is, the evaluation was relied on a local infor-
mation too much. Therefore, we adopted a new scheme
which uses staggered-mesh forEρ andΓi ,Γe as illustrated
in Fig. 2. Fluxes are evaluated on half-gridsρ = ρi±1/2

and time evolution ofEρ(ρi) is calculated as follows

ε0ε⊥
∂Eρ(ρi)

∂ t
=−e

[
zi Γ̄i(ρi)− Γ̄e(ρi)

]
, (9)

whereΓ̄i(ρi) andΓ̄e(ρi) are averaged values of those which
evaluated atρ = ρi±1/2. With this new scheme, FORTEC-
3D can simulate continuous transition from ion-root to
electron-root as shown in Fig. 3.

(old)
(new)

Fig. 2 Radial meshes and positions on which fluxes and electric
field are evaluated in old and new schemes.
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Fig. 3 Comparison of electric field profile between old and new
schemes for flux and electric field. Squares are estimation
of ambipolar field from GSRAKE.

5 Filtration

Reducing the numerical noise without relying on a massive
number of markers is essential to any Monte-Carlo simu-
lation. In theδ f method, the origin of big noise is from
markers which has huge weightsw or p. If collisions and
electric potential are neglected, the marker weights can be
determined as

p1 = p0
n1

n0

(
T0

T1

)3/2

e

[
−

(
mv21
2T1

)2

+
(

mv20
2T0

)2
]

, (10a)

w1 = w0− (p1− p0), (10b)

where subscript0 and1 represents initial and present val-
ues of them at marker position. From eq.(10), it is expected
that markers which travels long distance in radial direction
will have large marker weights. It is inevitable to appear
such large-drift particles in low-collisionality helical plas-
mas, we need to set limits for weight values. In reality,
we found only less than0.1% of simulation markers have
huge weightsp1 ∼ |w1| À 10p0, and these markers makes
the calculation very noisy and unstable. Therefore, we ap-
ply filters for markers by setting limits forp, |w|/p, and
v/vth. The second limiter is following from the assump-
tion in δ f method thatδ f/ fM ¿ 1, and the third limiter
is because fast ions tend to have large orbit widths. The
markers which breaks the limits are filtrated out and re-
distributed around the magnetic axis, which contributes to
keep marker population there.

To check the effect of filters, we have carried out sev-
eral tests with varied strength of filters as shown in Table
1. Note here that the “old” simulation used oldP oper-
ator and was not equipped with filters forp. In fig. 4,
comparison of radial electric field at three different times
with varied filters are shown. As is shown there, the time
evolution ofEρ and quasi-steady state profiles (at the last
figure of three) are almost the same regardless of strength
of filters. To check the time evolution in detail, we com-
pareEρ andΓi onρ = 0.45for three filters in Fig. 5. Here,
error-bars are evaluated from the variance between every
30 steps. It is found that the filters successfully suppress
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the numerical noise even in the weakest filter case, though
the start timing of transition differs slightly among three
simulations. It is also notable that the simulation marker
number can be reduced if we adopt the filters.

Fig. 4 Comparison of electric field profile between old and new
schemes for different filters.

6 Conclusion

The improvements for numerical schemes in FORTEC-3D
were proved to reduce numerical errors and noises signifi-
cantly with little changes in the observable values such as
flux and electric field, etc. FORTEC-3D will be applied to
study the FOW effects in helical plasmas, bifurcation phe-
nomena, and so on. We are also planning to apply theδ f
method to solve electron transport and evaluate the boot-
strap current in the presence of ambipolar electric field.
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