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The progress in 3-dimensional, non-local neoclassical transport simulation code “FORTEC-3D” is described.
The main purpose of the code is to solve the drift-kinetic equation in general 3-dimensional configuration using
the 8 f Monte-Carlo method, and to calculate neoclassical fluxes and the time evolution of the ambipolar radial
electric field simultaneously. In this article, we explain the new numerical schemes adopted for FORTEC-3D in
order to overcome problems happened especially in the cases where the bifurcation of radial electric field occurs.
Examples of test simulation for a LHD magnetic field configuration with bifurcated electric field are also shown.
With improved numerical schemes, FORTEC-3D can calculate neoclassical fluxes and trace the time evolution
stably as long as several ion collision times, which is long enough to observe GAM damping and transition of

the ambipolar electric field.
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1 Introduction

Detailed calculation of neoclassical transport in 3-
dimensional configuration plasmas such as LHD is impor-
tant for transport analysis, since in a 3-dimensional sys-
tem the ambipolar conditiofi;(p,E) = le(p,E) deter-
mines the radial electric field profile(p), wherel’; and

e are ion and electron patrticle fluxes across the flux sur-
facep = const It is known that the ambipolar condition
is mainly determined by neoclassical transport. If the am-
bipolar condition has multiple roots, bifurcation of radial
electric field profile occurs.[1] In LHD plasmas, appear-
ance of positive electric field, or the “electron root”, is

preferable since it reduces neoclassical transport compared

with that in negative one, or the “ion root”.[2] Moreover,
strong sheared electric field profile at the bifurcation point
is generally considered to be favorable from the viewpoint
of suppression of anomalous transport.

Neoclassical transport theory for 3-dimensional heli-
cal configuration[3, 4] has been constructed under the as-
sumption of local transport model where the typical or-
bit width in the minor-radius direction is assumed to be
negligible compared with the background gradient scale
lengths of a plasma. Recently non-local effects, or finite-
orbit-width (FOW) effects, on neoclassical transport have
attracted attention in the analysis of core transport in toka-
maks, where particle orbits with large widths break the as-
sumption of conventional neoclassical theory.[5, 6] In he-
lical configurations, the deeply ripple-trapped and transi-
tion particles show large deviation in radial direction. The
FOW effect of these orbits will be important in neoclas-
sical transport analysis if the collisionality becomes quite
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low. The presence of strong-sheared electric field will also
brings the non-local effect to neoclassical transport. How-
ever, the applicability of analytic neoclassical theory to
these situations is questionable since it neglects the FOW
effect from the beginning.

From the considerations above, we have been devel-
oping a simulation code to solve the drift-kinetic equation
(DKE) including the FOW effect in 3-dimensional config-
uration. The simulation code, FORTEC-3D,[7, 8] uses the
o f Monte-Carlo method[9, 10] which has been applied to
some other transport codes both for tokamaks[11] and for
helical configurations.[12, 13] The features of FORTEC-
3D are : (1) It uses a conserved-form linearized Fokker-
Planck collision operator. (2) It is a global simulation. The
entire confinement region is solved at once. (3) Time evo-
lution of radial electric field is solved simultaneously. The
ambipolar electric field is then determined in consistency
with neoclassical fluxes. (4) To reduce calculation time,
only the ion transport is solved by th®f method, and
electron transport is solved by GSRAKE code[14] which
solves bounce-averaged DKE. Note that GSRAKE solu-
tion does not include the FOW effect, and then only the
non-local effect for ions transport is treated in FORTEC-
3D.

So far, FORTEC-3D has successfully applied for LHD
configurations to solve the formation of ambipolar field
for ion roots,[7] and to study the configuration dependence
of GAM oscillation and damping[8]. However, from sev-
eral test calculations we found that it was difficult to apply
FORTEC-3D to the cases with electron roots, since bifur-
cated radial electric field profile became unphysical shape
as shown later. We also found that numerical noise in par-
ticle flux and numerical error in collision operator were in-
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tolerably large, which had not found in tokamak cases. We

ascertained the cause of these problems were from inac-

curacy in radial grids for evaluating flux and electric field,
and from the emergence of huge-weight markers.

In this paper, improvements for numerical schemes in
FORTEC-3D recently applied to overcome the problems
above are explained. In section 2, basic equations for
Monte-Carlo method are reviewed. In section 3, modifi-
cation to collision operator is described. The new opera-
tor has good conservation property with less marker num-
bers. In section 4, improvement in the evaluation of flux
and electric field are explained. Adoption of staggered-
mesh in radial direction to evaluate these two quantities
makes it possible to simulate the formation of bifurcated
radial electric field profile stably. In section 5, new filtering
scheme for marker weights to reduce numerical noise is in-
troduced. By comparing several tests with varied strength
of filters, it is shown that the filtering scheme does not af-
fect the solutions. By these improvements, now FORTEC-
3D is ready to solve neoclassical transport in helical plas-
mas in varied profiles and simulate evolution of electric
field including bifurcations.

2 Basic equations of théf method

In the 6f method, time development of the perturbation
of plasma distribution function from the local Maxwellian
of = f — f, is solved according to the DKE

D5 951
= = 7+(VH+Vd)-D5f—Ctp(5f)
= vy Ofy + 2fy, )

whereC;, and & are test-particle and field-particle parts
of linearized collision operator. The magnetic field is
given in the Boozer coordinate systefw,8,{)[15] as

B =0¢ x 06 +10¢ x Oy. Practically, we use for a
normalized radial coordinate defined from toroidal flix
asp = v/ W/Por- A MHD equilibrium magnetic field is
constructed from the VMEC code[16]. The time evolution
of radial electric fielde = —d®/dplp = E,Op is solved
from the following equation

JE
£ 5 =—elal—Td, @

where subscriptsande describe particle species, and=
[(1DpI2) +(2I0p?) N2].

To solve eq. (1), two weightsy andp, are introduced
which satisfy the relationag = &f and pg= f,,, respec-
tively, whereg is 5-dimensional simulation marker distri-
bution function. Since the time evolution of marker distri-
bution is given byDg/Dt = 0, we obtain

2

dw p
e _ Py .o, (3b)

dt i

The numerical procedures for the collision operator and for
eg. (2) are described in the following sections.

3 Collision operator

The linearized Fokker-Planck operator in FORTEC-3D is
made to satisfy the following relations,

[t (©pl01)+ 21y) =0for.s = {1y 2} @)

Cip(8f)+ P fy =0forof = (cu+¢,-v+c,v)fy,. (5)

The test-particle operat@, is expressed by random scat-
tering in the(v”,vL)-space. The field-particle operator is
given as follows

P = a[l—S\/g(q)—(p’)xl/z} on

+ vax*3/2<p5P+cx*l/2(<p—cp’)aE, (6)

wherex = v?/Va, @(x) is the error function, and

(3N, 5P, 5E} = /d?‘v{l,vH,vz}Ctp(éf) 7)

are changes in constants-of-motions @y only. Previ-
ously, the relation (3b) has been used to determine con-
stants(a,b,c) = (1/n,2/nv,,,2/3ny,,). However, it was
found that the numerical error in the conservation low (4)
became larger as the numerical noifg— pg became
larger. The numerical error is significant in 3-D helical
configuration cases compared with 2-D cases, because in
3-D cases it is difficult to keep enough marker population
in a unit volume as in 2-D cases, and the marker distri-
bution g is distorted in the velocity space in the presence
of ripple-trapped particles. In the improved version, we
do not use (3b) any more to makef,,, but the factors
(a,b,c) are determined at every moment of collision so
that the conservation low is strictly satisfied. In fig. 1,
the residual relative error in momentum and energy arisen
at one operation ot , + & fy, are compared between old
and newZ f,, for several tests with varied marker num-
bers. For previous operator, the numerical error is larger
for fewer marker case. However, the error in new operator
is just the rounding-error level even in the 1600-markers
calculation. We have also confirmed the other property of
collision operator (5) is also kept in the new operator.

4 Radial meshes

The relation between neoclassical fluxes and radial electric
field (2) is solved on discrete meshes in hheoordinate.

I'; is evaluated by the volume averaged value betwehn
andi + 1-th meshes as follows

_ 1 3 3,7
[P y) = 2y /V dx_/dvpaf

i+1/2 /& 1/

1

= Z Wkpkc(pk7 I)v (8)
Avi+1/2 {klp <p<pi;1}
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Fig. 1 Relative error in momentum and energy in one opera-
tion of G + & fy,. The time interval for the operation

is takenAt = 2 x 1073,

wherek is the marker index, an@d(p,, i) is a shaping factor

of a marker.[17] For electron flux GSRAKE solution is re-
ferred to :Te(p,, 1 /5) = Fe(pi+1/2,Ep(pi+1/27t))GSRAKE.
Previously, the electric field and fluxes were evaluated on
the same pointp = Pii1/2 according to eq. (2). Itisil-
lustrated in Fig. 2. However, using this scheme, we found
that the electric field profile fell into an unphysical shape as
shown in Fig. 3, where multiple roots for ambipolar con-
dition are expected from GSRAKE solutions. This is be-

cause all three values in eq. (2) were evaluated on the same

position, that is, the evaluation was relied on a local infor-
mation too much. Therefore, we adopted a new scheme
which uses staggered-mesh iy andl";, "¢ as illustrated

in Fig. 2. Fluxes are evaluated on half-grids= Pii1/2

and time evolution o€, (p,) is calculated as follows

IEy(p;)

=—e[zl(p) - )

&€

wherel™, (p,) andle(p,) are averaged values of those which
evaluated ap = Pii1/2- With this new scheme, FORTEC-
3D can simulate contmuous transition from ion-root to
electron-root as shown in Fig. 3.
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Fig. 2 Radial meshes and positions on which fluxes and electric
field are evaluated in old and new schemes.
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Fig. 3 Comparison of electric field profile between old and new
schemes for flux and electric field. Squares are estimation
of ambipolar field from GSRAKE.

5 Filtration

Reducing the numerical noise without relying on a massive
number of markers is essential to any Monte-Carlo simu-
lation. In thedf method, the origin of big noise is from
markers which has huge weightsor p. If collisions and
electric potential are neglected, the marker weights can be
determined as

m2\2 /m2\?
3/2 [, 1) 4+(20 }
P = po:1 (IO) e <2TT> <T0) ,(10a)
0 1
Wy = Wo—(P;—Py) (10D)

where subscripd and1 represents initial and present val-
ues of them at marker position. From eq.(10), it is expected
that markers which travels long distance in radial direction
will have large marker weights. It is inevitable to appear
such large-drift particles in low-collisionality helical plas-
mas, we need to set limits for weight values. In reality,
we found only less thaf.1% of simulation markers have
huge weightg, ~ |w;| > 10p,, and these markers makes
the calculation very noisy and unstable. Therefore, we ap-
ply filters for markers by setting limits fop, |w|/p, and
V/v,. The second limiter is following from the assump-
tion in 5f method thatd f/f,, < 1, and the third limiter

is because fast ions tend to have large orbit widths. The
markers which breaks the limits are filtrated out and re-
distributed around the magnetic axis, which contributes to
keep marker population there.

To check the effect of filters, we have carried out sev-
eral tests with varied strength of filters as shown in Table
1. Note here that the “old” simulation used oil#& oper-
ator and was not equipped with filters fpr In fig. 4,
comparison of radial electric field at three different times
with varied filters are shown. As is shown there, the time
evolution ofE, and quasi-steady state profiles (at the last
figure of three) are almost the same regardless of strength
of filters. To check the time evolution in detail, we com-
pareE, andrl’; onp = 0.45for three filters in Fig. 5. Here,
error-bars are evaluated from the variance between every
30 steps. It is found that the filters successfully suppress
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the numerical noise even in the weakest filter case, though 6
the start timing of transition differs slightly among three ,
simulations. It is also notable that the simulation marker ]
number can be reduced if we adopt the filters.
£
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