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The experimentally observed formation of localized solitary barriers for plasma electrons and ions near the 
electron cyclotron resonance points near the ends of the cylindrical trap is investigated analytically. A new method 
of confinement of plasma particles in cylindrical traps is proposed.  
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1. Inroduction 
In [1] the formation of thermal barrier of plasma 

particles was observed near the location of electron 
cyclotron resonance (ECR). In this paper, such thermal 
barriers and their behavior in plasma are investigated 
theoretically. Mechanisms of thermal barrier formation in 
the plasma near the two butt-ends of cylindrical magnetic 
traps are considered. These barriers can enhance 
confinement of the plasma electrons and ions in 
cylindrical magnetic traps. We consider general case the 
plasma with negative ions.  
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Fig. 1. Scheme of the thermal electrical barriers 
formation for plasma electrons and ions in ECR points on 
the edges of the magnetized cylindrical trap. Dotted line 
and symbol H(z) show the nonhomogeneous magnetic 

field. 1 is the qualitative scheme of the antenna for 
electromagnetic wave injection into the plasma trap; 2 is 

the cylindrical wall of the trap; 3 is the injected 
electromagnetic wave; 4 is the thermal barrier in kind of 

the dip and hump of the electric potential. 

 
2. Thermal barrier for plasma electrons 

Consider two electromagnetic waves injected into a 
plasma trap through its butt-ends (see Fig. 1). Near the 
electron cyclotron resonance (ECR) points of the 
confining magnetic well, the energy of the waves are 
converted into that of the transverse motion of the 
electrons. We shall show that this energy conversion can 
be responsible for the observed [1] barriers of the plasma 
particles. A thermal barrier is a self-consistent structure 
consisting of a paired dip and hump of the electric 
potential (Fig. 1). The electron and ion phase spaces at 
the left barrier are shown in Figs. 2 and 3. The magnetic 
well H(z) has a minimum at the center of the trap, and it 
increases toward the edges of the trap. Near the ECR 
point the transverse electron velocity V⊥ is increased up 
to V⊥o because of the resonant wave-particle interaction. 
The electrons are reflected by the magnetic mirror. 
Because of the inhomogeneous magnetic field H(z), the 
electron transverse velocity V⊥(z)=V⊥o[H(z)/Ho]1/2, where 
Ho is the magnetic field at the ECR point, decreases in 
favor of its longitudinal velocity V||(z) 
V||(z)=V⊥o(1-H(z)/Ho)1/2, which increases towards the 
center of the trap. This leads to an average electron flow 
towards the center, and thus an uncompensated increase 
of the electron density at the center of the trap.  

The increase of the electron longitudinal velocity V|| 
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with respect to that of the ions near the ECR point leads 
to a nonequilibrium state. The reflection of the electrons 
with nonequilibrium velocity distribution from the 
potential dip leads to a growth of the dip’s amplitude. So 
these current-carrying electrons can excite the electric 
potential dip with amplitude ϕo on an ion mode with 
velocity Vc, close to zero, and are reflected from it. 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Electron phase space. Dotted line is the separatrix, 
separating reflected and penetrated electrons. Arrows 

specify a direction of the electron movement. 
 

From the electron Vlasov equation and ion 
hydrodynamic equations one can derive the evolution 
equation for the potential dip. In fact, we shall consider 
the slow evolution of the dip for its description. Taking 
into account that the resonant electrons are reflected from 
the dip, one can obtain from the Vlasov equation the 
expression for the steady state electron distribution 
function fe 

fe=foe(-[V2-2e(ϕ±∆ϕ)/me]1/2±V||),   (1) 
where foe is Maxwellian, ∆ϕ is the electric potential jump 
near the potential dip and has to be determined 
self-consistently. The plus and minus signs are for V 

greater and less than A(ϕ)sign(z), respectively. Here 
A(ϕ)≡[2e(ϕo+ϕ)/me]1/2.  

In the following we shall use the normalized 
quantities φ≡eϕ/Te, N-≡no-/no+, Ne≡noe/no+, Q±=q±/e, and 
Vs±=(Te/M±)1/2. Furthermore, z is normalized by the 
electron Debye radius rde, V|| by the electron thermal 
velocity Vthe, t by the inverse ion plasma frequency  ωp+

-1, 
and the speed Vc of the localized perturbation by the 
ion-acoustic velocity (Te/M+)1/2. Here, Te, is the 
temperature of electrons, no- and no+ are the unperturbed 
densities of negative and positive ions, q± is the charge of 
positive and negative ions. 

Integrating (1) on velocity, one can derive the 
electron density ne in the first approximation on small V||  

ne≈noeexp(φ)[1-(2∆φ/√π)β1-2V||(2/π)1/2β2 ,  (2) 
β1≡∫oβdx exp(-x2) , β2≡∫oβdx (x2-φ)1/2exp(-x2)], 

β≡(φo+φ)1/2. 

Far from the dip the plasma is quasineutral 
ne(z)⏐z→∞ =ne(z)⏐z→-∞=1-N-. Hence we derive, using (2), 
the expression for potential jump ∆φ near the dip  

∆φ≈V||(2/π)1/2(1-exp(-φo))/β3,    (3) 
β3≡[1-(2/√π)∫o√φo dx exp(-x2)] 

From hydrodynamic equations the expressions for 
densities of positive and negative ions can be obtained  

V ni±=n±NL+n±τ , n±NL=no±/[1-(±q±)2ϕ/M±Vc
2]1/2,  (4) 

∂n±τ/∂z=±2(∂ϕ/∂t)(no±q±/M±Vc
3)β4,  

β4≡[1-(±q±)ϕ/M±Vc
2]/[1-(±q±)2ϕ/M±Vc

2]3/2

Substituting (2), (4) in Poisson’s equation we can 
derive the nonlinear evolution equation z

∂3
zφ+{β5+β6}2∂tφ/Vc

3+(∂zφ/Vc
2){β7+β8}- 

-{exp(φ)-sign(z)V||(2/π)1/2{β9- 
-β10+(1-exp(-φo))β11β12/√π}}∂zφ=0,   (5) 

β5≡ Q+
2V2

s+(1-2φQ+V2
s+/Vc

2)-3/2(1-φQ+V2
s+/Vc

2),  
β6≡Q-

2N-V2
s-(1+2φQ-V2

s-/Vc
2)-3/2(1+φQ-V2

s-/Vc
2),  

β7≡Q+
2V2

s+(1-2φQ+V2
s+/Vc

2)-3/2,  
β8≡Q-

2N-V2
s-(1+2φQ-V2

s-/Vc
2)-3/2,  

β9≡(φo/(φo+φ))1/2exp(-φo),  
β10≡∫√-φ

√φo dy(1-2y2)exp(-y2)/(y2+φ)1/2,  
β11≡[1-(2/√π)∫o√φo dxexp(-x2)]-1,  

β12≡[exp(-φo)/(φo+φ)1/2+2(φo+φ)exp(-φo)+ 
+4∫√-φ

√φo dy y(y2+φ)1/2exp(-y2)].  
Here ∂z≡∂/∂z, ∂t≡∂/∂t. (5) has been derived in 
approximation of slow dip evolution, i.e. in 
approximation of the small growth rate of the dip 
amplitude γnl . 

From the nonlinear equation (5) the dip is shown to 
propagate with a slow velocity Vc≈0. From (5) the growth 
rate of the dip’s small amplitude can also be obtained 

γnl≈ωp+(V||/Vthe)3/2(q+/e)(n+/ne)1/2β13,   (6) 
β13≡{1+[1/3-(ne/n+)(e/q+)](eϕo/Te)(π/2)1/2(Vthe/2V||)}. 

One can see that the dip is formed at ratio of electron 
current-carrying to thermal velocity V||/Vthe larger than 
the threshold. The threshold decreases at decreasing of 
ratio of electron and positive ion densities ne/n+ and is 
equal to zero at ne/n+<q+/3e. The threshold is maximum at 
ne/n+=1.  
 

3. Barrier formation for plasma ions in kind of 
electric potential hump near the ECR point 

As the electrons are reflected from the dip and the 
ion flow passes with velocity Vo+ freely, the 
uncompensated volume charge of ions is formed after the 
dip, in the field of which the ions slow down and are 
reflected. This volume charge forms perturbation of the 
electric potential hump. The ion flow enhances this hump 
of the electric potential. At first we describe the 
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quasi-stationary properties of the hump, neglecting the 
nonequilibrium condition. Then taking into account the 
nonequilibrium condition we can obtain the hump’s 
excitation, in other words the growth of the hump’s 
amplitude. Further we will show that the electric potential 
hump is almost fixed in space.  

We consider general case, when flow of the positive 
ions passes with velocity Vo+ in the plasma with electrons 
and also with negative and motionless positive ions of 
small densities. 

 

 
 
 
 
 
 
 
 

Fig. 3. Ion phase space. Dotted line is the separatrix, 
separating reflected and penetrated ions. Arrows specify a 

direction of the ion movement. 
 

In linear approximation the perturbation excitation 
by the positive ion flow, propagating relative to negative 
and motionless positive ions of small densities, is 
described by the following dispersion ratio: 

1+1/(krde)2-ω2
p+/(ω-Kvo+)2-ω2

p-/ω2-ω2
pq/ω2=0.   (7) 

Here ω, k are the frequency and wave-vector of the 
perturbation; ωp± are the plasma frequencies of the 
negative and the flow’s positive ions; ωpq is the plasma 
frequency of the positive motionless ions; rde is the Debye 
radius of electrons; Vo+ is the velocity of the positive ion 
flow. 

From (7) we show that one can select the flow 
velocity such that following inequalities are correct 

Vph=ω/k≈(Vo+/24/3)[(n-m+q-
2/ n+m-q+

2)+(n+qq+q
2/ 

n+q+
2)]1/3<<Vs+, 

λ=2π/k=2πrde/(Vs+
2n+q+

2/Vo+
2nee2-1)1/2>>rde . (8) 

Hence the perturbation is almost motionless, that is 
Vph<<Vs+. Vs+=(T/m+)1/2 is the ion-acoustic velocity of 
the flow positive ions. Here n-, m-, q- (n+, m+, q+ ) are the 
density, mass and charge of the negative (positive) ions. 

From (7) we derive the growth rate of the 
perturbation excitation:  

γ=(1.5)1/2(Vo+/rde)[(n-m+q-
2/n+m-q+

2)+ 
+(n+qq+q

2/n+q+
2)]1/3(Vs+

2q+/Vo+
2e-1)1/2.   (9) 

On the non-linear stage of the instability 
development the electric potential perturbation ϕ 
represents the solitary hump of the finite amplitude ϕo.  

The distribution function fe(v) of untrapped 

electrons, that are arranged outside the separatrix, looks 
like: 

fe(v)=[noe/Vte(2π)1/2]exp(eϕ/Te-mev2/2Te).  (10) 
For trapped electrons, i.e. for electrons located inside 

the separatrix, the distribution function does not depend 
on energy because of an adiabaticity of the evolution. 

Integrating the electron distribution function on 
velocity, we get following expression for electron 
density: 

ne=(no/(2π)1/2)(2/T)3/2∫∞odε(ε+eϕ)1/2exp(-ε/T).  (11) 
Vi From the hydrodynamic equations for positive ions 

it is possible to get the following expression for their 
density: 

n+=no+/[1-2q+ϕ/m+(Vo+-Vh)2]1/2.   (12) 
z Here Vh is the velocity of the solitary perturbation.  

As a result from (11), (12) and the Poisson’s 
equation we have an equation for the spatial distribution 

of the electric potential φ  of the perturbation of any 

amplitude: 

φ’’=(2/√π)∫∞odae-a(a+φ)1/2-1/(1-2Qφ/voh
2)1/2.  (13) 

Q=q+/e, φ=eϕ/T, «’»=∂/∂x, x=z/rde, voh=(Vo+-Vh)/Vs+.  

From the apparent condition that the electric field of 
the electric potential hump is equal to zero for maximum 

potential φ’|φ=φo=0 and from (13) we obtain the hump 

velocity, voh: 

voh
2/Q=(A-2)2/2(A-2-φo), 

A≡(8/3√π)∫∞odae-a(a+φo)3/2.       (14) 

In the approximation of small amplitude from (13), 
(14) we obtain: 

voh
2≈ Q,  L≈[15√π/4(1-1/√2)]1/2φo

-1/4.   (15) 
If Vo+ is close to (q+/e)1/2Vs+, the perturbation is 

approximately motionless.  
Taking into account the small densities of negative 

and motionless positive ions, we derive from the Poisson 
equation the evolution equation: 

2ω2
p+∂3ϕ/∂t3/(Vo+-Vh)3=-(ω2

p-+ω2
pq)∂3ϕ/∂z3.  (16) 

From (16) the growth rate of the non-linear 
perturbation amplitude is derived: 

γNL≈     (17) 

≈ωp+(eϕo/T)1/2[(no-m+q2
-/no+m+q2

+)+(noqq2
+q/no+q2

+)]1/3. 
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4. The electron mechanism of the barrier 
formation for plasma ions near the ECR point 

Let us consider the mechanism of the electric 
potential hump formation by current-carrying (i.e. with 
V||≠0) plasma electrons near the dip of the electric 
potential. 

The potential jump ∆φ, formed near the dip, 
accelerates electrons to the first front of the dip. Further 
we assume that the current-carrying velocity V|| of the 
electrons on the back front of the dip is close but smaller 
than the electron thermal velocity Vth. Hence on the first 
front of the electric potential dip the electron 
current-carrying velocity becomes more than electron 
thermal velocity due to the flow continuity law. Hence on 
the first front of the dip the Bunemann instability is 
developed [2]. Due to Bunemann mechanism interaction 
of electron flow with this region an electric potential 
hump is excited. 

Let us describe the solitary perturbation in kind of 
electric potential hump. We will show that it represents a 
nonlinear perturbation on a slow electron-sound mode. 
As it is slow, resonant electrons can be trapped by such 
perturbation.  

From Vlasov’s equation the expression for the 
perturbation of the electron distribution function is 
derived. Integrating this expression on velocity in case of 
a small amplitude of the solitary perturbation ϕo we get 
the expression for the perturbation of electron density  

δn'=∂tϕβ14+ϕ'R(y)+ϕϕ'β15,   (18) 
β14≡[y+(1-2y2)(1-R(y))/y], β15≡[1-y2+(3/2-y2)(R(y)-1)], 

 R(y)≡1+(y/√π)∫-∞∞dtexp(-t2)/(t-y), y≡(V||-Vh)/Vth√2. 
Here a point means derivative in time, and a prime is a 
spatial derivative. Vh, ϕ are the velocity and the potential 
of soliton. φ≡eϕ/Te. Te is the electron temperature. 
Substituting (18) in Poisson’s equation, we derive in 
stationary approximation an equation, describing spatial 
distribution of potential: 

(φ')2 =φ2R(y)-[1+(2y2-3)R(y)]φ3/6.   (19) 
The soliton width is followed from (19) to be 

approximately equal ∆z=(48Te/ϕo)1/2. The soliton width 
decreases with amplitude growth.  

One can show that Vh≈0 if V||≈1.32Vth . 
In case of large amplitudes, eϕo/Te>1, from Vlasov 

equation we have the expression for electron distribution 
function f=fo[(u2-2eϕ/m)1/2+Vhsign(u)] for 
⏐u⏐=⏐V-Vh⏐>(2eϕ/m)1/2. Here fo is Maxwell distribution 
function. Thus we obtain the equation for the soliton 
shape 

(φ')2=    (20) 

=-φ+(2/√π)1/2∫-∞∞dt(t-y)2exp(-t2){[1+φ/(y-t)2]1/2-1} 
From (20) we derive the soliton width 

∆z=[2eϕo/Te(√2-1)]1/2   (21) 
From (21) we conclude that the soliton width grows with 
ϕo. Therefore, it is necessary to take into account the 
electrons, trapped by the soliton field. Assuming the 
distribution of their density as ntr(z)=n2exp[eϕ(z)/Ttr], we 
derive similarly to (21), that width and velocity of the 
soliton grow with amplitude growth (in difference from 
the case of small amplitudes of the solitary perturbation) 
Here Ttr , n2 are the trapped electron temperature and 
density. 

Thus, neglecting the ion mobility, this solitary 
perturbation is stationary and an electron one. However at 
taking into account of the ion mobility it is necessary to 
expect occurrence of slow growth of the perturbation’s 
amplitude, as a result of Bunemann instability 
development. In the following order of the theory of 
disturbances from (18) we derive the correction of the 
next order to a spatial derivative of electron density  

ne1'=∂tϕ[y+(1-2y2)(1-R(y))/y]    (22) 
This expression as follows from a spatial derivative from 
Poisson’s equation must be equal to a spatial derivative 
from the ion density perturbation ni'. It is possible to find 
ni' in a linear approximation from ion hydrodynamic 
equations  

∂2
tni=(me/mi)φ''    (23) 

Equating the second time derivative from (22) and 
the first spatial derivative from (23), we obtain  

∂3
tφ=(6me/mi)φ'''    (24) 

The solution of (24) we search as 
φ(z,t)=φo(t)η[z-∫-∞t dt1δvo(φo(t1))] .   (25) 

η(z) is quasistationary shape of the perturbation. We 
assume that ∂tφo(t)=γφo(t). In (25) the change of soliton 
velocity with change of its amplitude is taken into 
account. 

Substituting ∂tφ for γφ-δvhφ’, we obtain from (24) 
γ≈(me/mi)1/3φo

1/2    (26) 
In the case of the electron mechanism of the barrier 

formation for plasma ions the inverse spatial sequence of 
the hump and dip, comparing with that one shown in Fig. 
1, is realized. 
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