
Proceedings of ITC/ISHW2007

Axisymmetric equilibria with flow in reduced single-fluid models
Atsushi ITO1), Jesús J. RAMOS2) and Noriyoshi NAKAJIMA1)

1)National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan
2)Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139-4307

Reduced magnetohydrodynamic equations for axisymmetric toroidal equilibria of flowing high-β plasmas
are derived with asymptotic expansions in terms of the inverse aspect ratio in order to construct models suitable
for the extension to include hot ion effects that are obtained with asymptotic expansions. Depending on the flow
velocity, different orderings are applied. Singular points at the poloidal flow velocity equal to poloidal sound and
poloidal Alfvén velocity are reproduced. The poloidal sound singularity appears in the higher order equations.
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Plasma flows are suggested to lead transport barriers
and pedestals that show steep profiles in the steady states of
magnetic confinement. Flowing equilibria have been stud-
ied to describe these phenomena in the framework of mag-
netohydrodynamics (MHD)[1, 2]. However, for such steep
plasma profile features, small-scale effects not included in
the ideal MHD model should be significant. The small
scale effects arising due to the Hall current have been stud-
ied with two-fluid or Hall MHD models [6, 7, 8, 9, 10, 11].
However, these models are consistent with kinetic theory
only for cold ions. In order to include the hot ion effects
that are relevant to fusion plasmas, an extension of the
model is necessary. However, a consistent treatment of hot
ions in a two-fluid framework must include the ion gyrovis-
cosity and other finite ion Larmor radius effects. These ef-
fects are obtained by asymptotic expansions in terms of the
small parameter δ that is the ratio between the ion Larmor
radius and the macroscopic scale length, and are much sim-
plified in the slow dynamics ordering v∼ δvth where v and
vth are the flow and thermal velocities respectively [12, 13].
In this study, we obtain reduced sets of equations for MHD
equilibria with flow with asymptotic expansions in order to
construct models suitable for the extension to include hot
ion effects. We shall study two cases of the flow velocity
in the orders of the poloidal sound and poloidal Alfvén ve-
locities. These are the characteristic velocities that bring
singularities in the equilibrium equations [2, 3, 4, 5].

The equilibrium equations for single-fluid MHD are

∇ · (ρv) = 0, (1)

∇×E = 0, (2)

E =−v×B, (3)

ρv ·∇v = j×B−∇p, (4)

µ0j = ∇×B (5)

v ·∇p+ γ p∇ ·v = 0, (6)

where ρ is the mass density, v is the flow velocity, E and B
are the electric and magnetic fields, j is the current density,
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and p is the pressure. Here we shall consider the corre-
sponding toroidal axisymmetric equilibria, where the mag-
netic field B and the current density j can be written as

B = ∇ψ(R,Z)×∇ϕ + I(R,Z)∇ϕ (7)

µ0j = ∇I×∇ϕ−∆
∗
ψ∇ϕ, (8)

where ψ is the poloidal magnetic flux and ∆∗ ≡ R2∇ ·
[R−2∇]. The asymptotic expansion is defined in terms of
the inverse aspect ratio ε ≡ a/R0 � 1 where a and R0 are
the characteristic scale length of the minor and major radii
respectively. The following high-β tokamak ordering is
applied,

Bp ∼ εB0, p∼ ε
(
B2

0/µ0
)
. (9)

The variables are expanded as

ψ = ψ1 +ψ2 +ψ3 + . . . ,

I = I0 + I1 + I2 + I3 + . . . ,

p = p1 + p2 + p3 + . . . ,

ρ = ρ0 +ρ1 + . . . ,

R = R0 + x,

where I0 ≡ B0R0. The leading order of the force balance
Eq. (4) yields

I1 +
µ0R0

B0
p1 = const. (10)

Here we consider the the flow velocity in the order of
the poloidal sound speed,

v∼ (Bp/B0)
√

γ p/ρ ∼
√

εvAp, (11)

where vAp ≡ Bp/
√

µ0ρ is the poloidal Alfvén velocity that
is the order of the flow velocity for the usual reduced MHD
(RMHD) [15]. Since

ρv2 ∼ ε
2 p∼ ε

3 (B2
0/µ0

)
,

this requires the third-order accuracy of the total energy
like the RMHD for finite aspect ratio tokamaks [15]. From



Proceedings of ITC/ISHW2007

the requirements ∇ ·v∼ εv/a to eliminate the fast magne-
tosonic wave and then v ·∇p ∼ ε2v/a, the flow velocity v
can be written as [15]

v≡
(
1+ x

/
R0
)

∇U ×
(
B
/

B
)
+ v‖

(
B
/

B
)

≡ vp + vϕ R∇ϕ, (12)

vp ≡
[

v‖
B

∇ψ +
(

1+
x

R0

)
I
B

∇U
]
×∇ϕ, (13)

vϕ R≡
Iv‖
B
−
(

1+
x

R0

)
∇ψ ·∇U

B
. (14)

The function U is expanded as

U = U1 +U2 + . . .

In the leading order, the poloidal flow is written in the stan-
dard stream function representation,

v(0)
p = R0∇U1×∇ϕ, (15)

and the toroidal flow velocity coicides with the parallel
flow,

v(0)
ϕ = v‖. (16)

The leading order of the ϕ-component of Ohm’s law (3)
yields

U1 = U1 (ψ1) , (17)

and its next order is

R0([U2,ψ1]+ [U1,ψ2]) = 0, (18)

which yields

U2−U ′
1ψ2 ≡U2∗ (ψ1) , (19)

where [a,b] ≡ (∇a×∇b) ·∇ϕ is the Poisson bracket and
the prime denotes the delivative of ψ1. The first order of
∇ · v is obtained from the projection of Faraday’s law (2)
along B as

(∇ ·v)(1) =
[

v‖
B0

+2xU ′
1,ψ1

]
. (20)

The leading order of the pressure equation (6) yields

p1 = p1[U1(ψ1)] = p1(ψ1), (21)

and the next order is

R0([p2,U1]+ [p1,U2]) =−γ p1(∇ ·v)(1). (22)

Substituting Eq. (20) to Eq. (22), one obtains the equation
for the second order pressure,

p2− p′1ψ2 + γ p1

(
v‖

B0R0U ′
1

+
2x
R0

)
≡ p2∗ (ψ1) . (23)

Analogously, the continuity equation (1) gives the equa-
tions for the zeroth- and first-order density,

ρ0 = ρ0[U1(ψ1)] = ρ0(ψ1), (24)

ρ1−ρ
′
0ψ2 +

ρ0v‖
B0R0U ′

1
+

2x
R0

ρ0 ≡ ρ∗ (ψ1) . (25)

The projection of the force balance Eq. (4) along B is

B · (ρv ·∇v+∇p)

=−ρI
R2

{
∇

[
Iv‖
B
−
(

1+
x

R0

)
∇ψ ·∇U

B

]
×∇ϕ

}
·
[

v‖
B

∇ψ +
(

1+
x

R0

)
I
B

∇U
]

−
(

1+
x

R0

)
ρI

BR2

{
v‖
B

∆
∗
ψ +

(
1+

x
R0

)
I
B

∆
∗U

+∇

(v‖
B

)
·∇ψ +∇

[(
1+

x
R0

)
I
B

]
·∇U

}
[U,ψ]

− ρ

2R2

[[
Iv‖
B
−
(

1+
x

R0

)
∇ψ ·∇U

B

]2

,ψ

]

+
ρ

2

[
v2
‖+
(

1+
x

R0

)2
[
|∇U |2−

(
B
B
·∇U

)2
]

,ψ

]
+[p,ψ] = 0. (26)

The first order of Eq. (26) is

[ρ0B0R0v‖,U1]+ [p2,ψ1]+ [p1,ψ2] = 0 (27)

which yields the equation for v‖,

B0R0ρ0U ′
1v‖+ p2− p′1ψ2 ≡ p3∗ (ψ1) , (28)

which is the Bernoulli law in the present system. Equations
(23), (25) and (28) show the coupling of v‖, p2 and ρ1 due
to the slow magnetosonic (sound) wave, since these are
decoupled in the cold (p1 → 0) or incompressible (γ → ∞)
limits, and yield

v‖ =− (2x/R0)γ p1− (p2∗− p3∗)
(β1−M2

Ap)(B
2
0/µ0)

MApvA, (29)

p2 =p′1ψ2 +
(2x/R0)M2

Apγ p1

β1−M2
Ap

−
M2

Ap p2∗−β1 p3∗

β1−M2
Ap

, (30)

ρ1 =ρ
′
0ψ2 +ρ∗+

(2x/R0)M2
Ap

β1−M2
Ap

ρ0

− p2∗− p3∗
(β1−M2

Ap)(B
2
0/µ0)

ρ0, (31)

where

β1 (ψ1)≡
γ p1

B2
0

/
µ0

, (32)
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and M2
Ap (ψ1)≡ µ0ρ0 (R0U ′

1)
2 is the poloidal Alfvén Mach

number. The singularity is found for β1 = M2
Ap where the

poloidal flow velocity equals to the poloidal sound veloc-
ity. The projection of the force balance Eq. (4) along ∇ψ

yields

|∇ψ|2∆
∗
ψ + I∇ψ ·∇I + µ0R2

∇ψ ·∇p

+ µ0R2
∇ψ · (ρv ·∇v) = 0. (33)

The first and second orders of Eq. (33) are

|∇ψ1|2 ∆2ψ1 +2µ0R0x∇ψ1 ·∇p1 + I1∇ψ1 ·∇I1

+ µ0R2
0∇ψ1 ·∇p2 +B0R0∇ψ1 ·∇I2 = 0, (34)

and

|∇ψ1|2
(

∆2ψ2−
1
R

∂ψ1

∂R

)
+2(∇ψ1 ·∇ψ2)∆2ψ1

+ µ0x2
∇ψ1 ·∇p1 +∇ψ2 ·∇

(
I2
1/2
)

+2µ0R0x(∇ψ2 ·∇p1 +∇ψ1 ·∇p2)

+∇ψ1 ·∇
(
µ0R2

0 p3 +R0B0I3 + I1I2
)

−µ0R2
0 (∇ψ1 ·∇U1)∆2U1

+ µ0R2
0∇ψ1 ·∇

(
|∇U1|2/2

)
= 0, (35)

where

∆2 ≡
(

∂ 2

∂R2 +
∂ 2

∂Z2

)
The projection of the force balance Eq. (4) along ∇ϕ is

∇ϕ ·
[
ρv× (∇×v)+ µ

−1
0 (∇×B)×B)

]
=−ρI

R2

{
∇

[
Iv‖
B
−
(

1+
x

R0

)
∇ψ ·∇U

B

]
×∇ϕ

}
·
[

v‖
B

∇ψ +
(

1+
x

R0

)
I
B

∇U
]

− (I/µ0R2)[I,ψ] = 0. (36)

The difference between Eqs. (26) and (36) is given by

[p,ψ]+ (I/µ0R2)[I,ψ]

−
(

1+
x

R0

)
ρI

BR2

{
v‖
B

∆
∗
ψ +

(
1+

x
R0

)
I
B

∆
∗U

+∇

(v‖
B

)
·∇ψ +∇

[(
1+

x
R0

)
I
B

]
·∇U

}
[U,ψ]

− ρ

2R2

[[
Iv‖
B
−
(

1+
x

R0

)
∇ψ ·∇U

B

]2

,ψ

]

+
ρ

2

[
v2
‖+(1+

x
R0

)2

[
|∇U |2−

(
B
B
·∇U

)2
]

,ψ

]
= 0. (37)

The first order of Eq. (37) yields

p2 +
B0

µ0R0
I2 ≡ g∗ (ψ1) , (38)

and the second order is[
p3 +

B0

µ0R0
I3,ψ1

]
+

2x
R0

[p2− p′1ψ2,ψ1]

+
I1

µ0R2
0
[I2− I′1,ψ1]− [g′∗ψ2,ψ1]

+
ρ0U ′2

1

R2
0

[
|∇ψ2|2/2,ψ1

]
= 0 (39)

which yields

p3 +
B0I3

µ0R0
+

I1

µ0R2
0

(
I2− I′1ψ2

)
+

ρ0 |∇U1|2

2R2
0

+
(

x
R0

)2 2M2
Apγ p1

β1−M2
Ap
−g′∗ψ2 ≡ E∗ (ψ1) . (40)

Substituting Eqs. (38) and (40) to Eqs. (34) and (35), we
obtain the expanded Grad-Shafranov equation in the pres-
ence of poloidal-sonic flow,

∆2ψ1 =−µ0R2
0

[
2x
R0

p′1 +
(

µ0

B2
0

p2
1

2
+g∗

)′]
, (41)

∆2ψ2 + µ0R2
0

[
2x
R0

p′′1 +
(

µ0

B2
0

p2
1

2
+g∗

)′′]
ψ2

=
1
R

∂ψ1

∂R
+M2

Ap∆2ψ1 +
|∇ψ1|2

2
(
M2

Ap
)′

−µ0R2
0

[
E ′
∗+
(

x
R0

)2

p′1

+
(

x
R0

)2
(

2M2
Apγ p1

β1−M2
Ap

)′

− 2x
R0

(
M2

Ap p2∗−β1 p3∗

β1−M2
Ap

)′]
. (42)

The equation for ψ1 (41) is same as for the static case while
Eq. (42) for ψ2 is modified by the flow and the singularity
appears. In the cylindrical limit x/R0 → 0, the singularity
can be removed when

p2∗ = p3∗ ≡ f∗ (ψ1)γ p1 (ψ1) ,

ρ∗ (ψ1)≡ f∗ (ψ1)ρ0 (ψ1) ,

and

f∗ (ψ1) = f [U1 (ψ1)] and f [U1 = 0] = 0.

Then, the equations for v‖, p2, ρ1 and ψ2 are rewritten as

v‖ =−
(

2x
R0

)
β1MApvA

β1−M2
Ap

, (43)

p2 = p′1ψ2−
(

f∗−2x
/

R0
)

M2
Ap− f∗β1

β1−M2
Ap

γ p1, (44)
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ρ1 = ρ
′
0ψ2−

(
f∗−2x

/
R0
)

M2
Ap− f∗β1

β1−M2
Ap

ρ0, (45)

∆2ψ2 + µ0R2
0

[
2x
R0

p′′1 +
(

µ0

B2
0

p2
1

2
+g∗

)′′]
ψ2

=
1
R

∂ψ1

∂R
+M2

Ap∆2ψ1 +
|∇ψ1|2

2
(
M2

Ap
)′

−µ0R2
0

[
E ′
∗+
(

x
R0

)2

p′1−
2x
R0

( f∗γ p1)
′

+
(

x
R0

)2
(

2M2
Apγ p1

β1−M2
Ap

)′]
. (46)

In comparson with the analysis of the transonic flow for
low-β tokamaks [5, 2], the singularity at the poloidal flow
velocity equal to poloidal sound velocity in the density
and pressure and its dependence on toroidicity has been
reproduced as higher-order effects and the singularity in
the higher order magnetic structure has been found in the
present study. However, in order to reproduce the radial
discontinuity of the density and pressure found in Ref. [2],
a local analysis assuming β1 −M2

Ap ∼ εM2
Ap will be nec-

essary. Finally we note that the hyperbolic region between
the cusp velocity and the poloidal velocity of the slow mag-
netosonic wave as pointed out in Ref. [4] may be degener-
ated because the difference between them goes to higher
order in the present ordering.

Next we consider the case for the poloidal-Alfvénic
flow v∼ vAp where the usual RMHD ordering applies. The
first order of Eq. (33) is

|∇ψ1|2 ∆2ψ1 +2µ0R0x∇ψ1 ·∇p1 + I1∇ψ1 ·∇I1

+ µ0R2
0∇ψ1 ·∇p2 +B0R0∇ψ1 ·∇I2

−M2
Ap[|∇ψ1|2∆2ψ1−∇ψ1 ·∇(|∇ψ1|2/2)] = 0. (47)

The first order of Eq. (37) yields

p2 +
B0

µ0R0
I2 +ρ0(R0U ′

1)
2|∇ψ1|2/2≡ g∗ (ψ1) . (48)

Substituting Eq. (48) to Eq. (47), we obtain the equation
for ψ1 in the following form,

(1−M2
Ap)∆2ψ1−

|∇ψ1|2

2
(
M2

Ap
)′

=−µ0R2
0

[
2x
R0

p′1 +
(

µ0

B2
0

p2
1

2
+g∗

)′]
. (49)

The singularity at the poloidal flow velocity equal to
poloidal Alfvén velocity arises in the first order of the
magnetic structure. This singularity is independent of the
toroidicity [16].

We have shown reduced sets of equations for MHD
equilibria with flow with asymptotic expansions and re-
produced the singular points at the poloidal flow velocity
equal to poloidal sound and poloidal Alfvén velocity. They

will be extended to include hot ion effects by setting δ ∼ ε

for the poloidal-sonic flow, and δ 2 ∼ ε , as usual reduced
two-fluid models [17, 18], for the poloidal-Alfvénic flow.
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