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In the traditional neoclassical ordering, mono-energetic transport coefficients are evaluated using the
simplified Lorentz form of the pitch-angle collision operator which violates momentum conservation. In this
paper, the parallel momentum balance with radial parallel momentum transport and viscosity terms is analysed,
in particular with respect to the radial electric field. Next, the impact of momentum conservation in the stellarator
lmfp-regime is estimated for the radial transport and the parallel electric conductivity. Finally, momentum
correction techniques are described based on mono-energetic transport coefficients calulated e.g. by the DKES
code, and preliminary results for the parallel electric conductivity and the bootstrap current are presented.
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1. Introduction
The International Collaboration on Neoclassical

Transport in Stellarators (ICNTS) was initiated in 2000.
The starting point is the drift-kinetic equation (DKE)
which is linearised with respect to the 1st-order distribu-
tion function defined as the (small) deviation from the 0th-
order (unshifted) Maxwellian, ��� , with the density, elec-
trostatic potential and temperature assumed to be constant
on flux-surfaces. The 1st-order DKE becomes inhomoge-
neous with a radial driving force, ���� ���� ( �� being the ra-
dial component of the � � -drift velocity and ���� the radial
derivative of the Maxwellian with total energy conserved),
and with a parallel driving force, !#"%$&�'�(� . Splitting
this DKE with respect to the driving forces leads to two
1st-order distribution functions, ) and * , where ) is re-
lated to �+�� �,�� (symmetric in "&$ ) and * to "-$&�'� � . The
Vlasov operator couples symmetric and asymmetric terms;
consequently, ) ( * ) has also asymmetric (symmetric) con-
tributions. With the linearised collision operator, .0/ 1 2 , the
parallel momentum balances are given by34 � 55 � 4 ��6 6 �7�� "-$ )*98 8 � 6 6;:=<?> �� @ " � $ � 3A " �BDC ) *E8 8� 6 6;:GFH>JIK � �ML <�> �N"-$ ) *98 8 � 6 6 ��"-$�. / 1 2PO )*&QR8 8S T�� " �UWV K � � L (1)
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where X XZYZY[Y \ \ means flux-surface averaging and velocity
space integration and I the electrostatic potential. Here,
the incompressible form of the ] F�: drift is used for con-
sistency with e.g. DKES (Drift-Kinetic Equation Solver)
[1, 2] and both momentum correction techniques [3, 4] de-
scribed later. The important advantage of this approxima-
tion is the disappearance of the @ :^F_>_I C <`> � term in
both acceleration terms, �a and �" (a S "&$;bc" ), in the con-
servative formulation; see [5]. Then, �a ! :d<&> � , i.e.
the mirror term, and �" S T allowing for a mono-energetic
treatment of the 1st-order DKE if the collision operator
is replaced by the simple Lorentz form of the pitch-angle
collision term which, however, violates momentum con-
servation. As shown in [5], the incompressibility approx-
imation in the 1st-order DKE is justified for radial elec-
tric fields, egf , nearly up to the toroidal resonance value,e,hjilkf Snmoqp "r� .

The 1st term in the parallel momentum balances (1)
describes the radial transport of parallel momentum which,
in general, is ignored in the traditional neoclassical theory
(see e.g. the review [6]). In an axisymmetric configura-
tion with esf S T , the tMuwvyx part of ) (symmetric in a )
leads to the particle transport whereas the z|{}tMx part (asym-
metric in a ) finally leads to the bootstrap current coeffi-
cient. This separation is broken at larger e f : the tMuwvyx
component of ) has also asymmetric contributions lead-
ing to radial transport of parallel momentum. The parallel
momentum transport coefficients in mono-energetic form
equivalent to eq.(1) are calculated with a new DKES ver-
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Fig. 1 Mono-energetic parallel momentum transport coeffi-
cients, ~9������~��l� (open circle) and ~g���|�M~0�W� (full
square), vs. the normalised radial electric field, ���� for
the LHD-360 configuration at � �D�N�}� �E���;�}�-� .

sion. In Fig. 1, the mono-energetic � �M��������;���%� (nor-
malised to the particle transport coefficient � ��� � ����q�%� )
and � ��¡ �¢�;��;�-£¤� (normalised to the Ware pinch coef-
ficient � �¥¡ �¦����c£`� �¨§s� ¡�� �¦§0� ���%� ) are shown for
rather large ©sª (normalised to the toroidal resonance value,©¬«ª �­© ª�® ©,¯j°l±ª , for the LHD vacuum configuration with² �´³&µ ¶`· m at half the plasma radius. (Here, �ZµZµ[µ � means
integration over � and flux-surface averaging.) The value
of the collisionality, ¸%«R�­¸ ² ®r¹ºW» , places these results in
the lmfp-regime. For an axisymmetric configuration where
both � ��� and � �
¡ are independent of ©gª (for ©¬«ªJ¼¾½ ),����� ® �¿��� slightly exceeds �¬�|¡ ® �¿�¥¡ , and both terms scale
linearly in © «ª . These results lead to a strong restriction for
the radial electric field: only for © «ª ¼¦½ , does the radial
transport of parallel momentum become negligible. This
restriction is stronger than the one related to validity of the
incompressible À^ÁNÂ approximation; see [5]. Further-
more, also the 3rd term in eq.(1), the viscosity related to
the ÀÃÁÄÂ flow, can be ignored for ©Å«ª ¼Æ½ .

The 2nd term in the parallel momentum balances (1)
is the parallel viscosity describing the damping of parallel
flows due to the magnetic field inhomogenity. In an asymp-
totic collisionless limit, the 1st-order DKE for £ (paral-
lel driving force) can be directly integrated for sufficiently
small © ª following Refs. [7, 8]. By flux-surface averag-
ing, the 1st Legendre component of the DKE reduces to a
1D equation for the velocity dependence of the asymmetric
part of £ (here only for ions)£-Ç �È§ ÉËÊ;Ì�ÍÎ ¸}ÏZÏ�ÐjÑÓÒ ½�}ÔDÕ ÐjÑ�Ò �Ö × ØsÙrØÉwÚ ½ § Ø Ê|Í
and Û �Ï[Ï Ð Õ Ò(§ �cÜ�}Ô ¸ Ï[Ï ÐWÑÓÒ Õ �Ý¸ Ï × Ñ%Þàßâá
with the thermal ion collision frequency, ¸`Ï × , Ñ'� » ® » ÜWã ,

Ê �åä ® ägæ�ç�è , and with the trapped particle fraction�cÜ � ½ § � Ô � ½ § ³é ÉêÊ Ì Í �Ö × ØsÙrØÉ Ú ½ § Ø Ê�Í µ£ Ç Ð Øìë ½ Òí�¨· for trapped particles.

Û �ÏZÏ is the 1st
Legendre component of

Û�î ï ð
, ion-electron collisions

can be neglected. Impurities can act as an additional
momentum sink (but are ignored here for simplicity).
In this collisionless picture, the viscous damping of the
parallel ion flow is equivalent to the friction of the passing
with the trapped ions. In an equivalent approach [9], the
collisionless electric conductivity is obtained.

2. Simple Pictures of Momentum Corrections
The computations of even mono-energetic transport

coefficients (e.g. by DKES) are rather time expensive in
the lmfp-regime. The treatment of the linearised collision
operator with momentum conservation would require the
solution of the DKE in the 4D-phase space instead of the
3D mono-energetic solution. Consequently, momentum
correction techniques [3, 4] based on the mono-energetic
transport coefficients become attractive. A rough estima-
tion of the correction, however, can be obtained from eq.(1)
with incompressible ©nÁÅä flow for the different transport
coefficients. The 1st-order distribution functions are split:� � � ��ñ � Ì and £ � £ ��ñ £ Ì where � � and £ � are the solu-
tions of the mono-energetic DKE with the Lorentz form of
the pitch angle collision term,

Û � , instead of

Û�î ï ð
. Then,

the corrections � Ì and £ Ì are defined byòNó � Ì£ Ì ô §
Û î ï ð ó � Ì£ Ì ô �

Û î ï ð ó � �£ � ô § Û � ó � �£ � ô
Neglecting parallel momentum transport and the À´Á_Â -
viscosity term for sufficiently small ©õª leads to the balance
equations for the 1st and 2nd Legendre components of the
corrections, � Ì and £ Ì ,ö Â=÷cø+äNù Ì Ð � Ò � Ì£ Ì;ú ñ ³ Î

Û î ï ð(û ö ä � � Ì£ Ì;ú}ü �¸ � ¡;�� ¡�¡ § Û î ï ð ó � ¡��� ¡�¡ ô (2)

where �ý¡��}Ð » ÒE�G� ��� � � and �Å¡�¡`Ð » ÒE�G� �&£ � � are the mono-
energetic transport coefficients, calculated e.g. by DKES,
and ù Ì Ð � Ò is the 2nd Legendre polynomial.

In the lmfp-regime, the parallel viscosity evaluated for� � (by DKES) is proportional to ¸&þ , and only weakly de-
pendent on © ª . Although this term is also determined by
the symmetric component of � � , the large �ÿ���'� �;��}� � �
has a quite different dependence on ¸Ó« and © ª , e.g. in
the ½ ® ¸ - and the Ú ¸ -regimes. If any distribution func-
tion is split into a slow and a fast scale with respect to
bounce-averaging, the slow part determines � ��� [10], but
does not contribute to the parallel viscosity. This can
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be shown by formulating the flux-surface averaging as
bounce-averaging for the ripple-trapped particles, and the
slow contribution vanishes due to the

�������
term (differ-

ent to
�	�
���

in �
 ). Consequently, the impact of momen-
tum conservation on the radial transport in the stellarator
lmfp-regime is negligible. For tokamaks, however, the sit-
uation is different. Here, the radial transport coefficients
in the lmfp-regime (banana regime) are proportional to ���
and corrections from the momentum conservation are not
negligible. NEO-2 [11], based on the field-line integration
technique, is generalised for a full linearised collision oper-
ator with momentum conservation. As shown in Ref. [12],
the radial transport coefficients are reduced whereas the
bootstrap current coefficient are increased with the full lin-
earised collision operator compared to the Lorentz model.

The impact of momentum conservation for the parallel
electric conductivity is of the order of 100%. The classi-
cal “Spitzer problem” in the collisional limit [13] can be
analytically generalised to the collisionless limit [9]. The
collisionless Spitzer function, ������� , is defined by the 1D
integro-differential equation in ��������� �"!#�$%&% �"�'�)(+*-, �, . � %&% �"���0/

� %21��3547628�9 �:��� %21 �<;7=�>
with the thermal electron-ion collision frequency, � %21 ,
and the (energy-dependent) electron-electron collision fre-
quency, � %&% �"��� . # $%&% is the 1st Legendre moment of the
linearised collision operator. The classical “Spitzer prob-
lem” corresponds to , � �@? . In the mono-energetic ap-
proach, the normalised A 3B3 � �C�D�FE in the collisional
limit and is reduced to the passing (circulating) particle
fraction, A 3G3 �H�C��� , . , i.e. the trapped particles defined
by , � do not contribute. With momentum conservation,
a stronger weighting of the trapped particles appears (de-
fined by , � � , . ) which reflects the passing-trapped electron
fricton adding to the friction with ions and impurities (de-
fined by the 4I628 term). Rather accurate approximations
of both the collisional and collisionless Spitzer function,�J�"��� , have been developped; see [14] and [9], respec-
tively. Momentum correction is important for the parallel
electric conductivity for all collisionalities.

Fig. 2 shows the benchmarking for the parallel elec-
tric conductivity, K0� , normalised to the collisional Spitzer-
Härm value [6] for the W7-X high-mirror (w7x-hm1) and
low-mirror (w7x-lm1) vacuum configurations at LMONQP E
with , �7��?SRUT�VWT�V and , �I��?CR XYT X[Z , respectively. Instead of
the Maxwellian, the collisional Spitzer function is used in
the energy convolution of the mono-energetic DKES coef-
ficients, A 3G3 (solid lines). This approach was already used
for the evaluation of the experimental current balance in
W7-AS; see e.g. [15]. The first preliminary results (full
circles) of the momentum correction technique developed
by Taguchi [3] agree quite well with the simplified (colli-
sional) correction technique implemented in the DKES en-
ergy convolution. (These data are normalised to the DKES
data at the highest � � , so far). Furthermore, the asymptotic
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Fig. 2 Parallel electric conductivity, \^] , normalised to the colli-
sional Spitzer-Härm value vs. the electron collisionality
for the high- and low-mirror W7-X configurations (lower
and upper curves, respectively) at half the plasma radius
for _a`�bdc�e . \ ] based on the collisionless Spitzer func-
tion is given for reference (dashed lines).

limit � �gf ? based on the collisionless Spitzer function
with all the trapped-particle effects included (completely
kinetic modelling) is given for reference (dashed lines).

3. Momentum Correction Techniques
The momentum correction techniques [3, 4] are based

on moment methods, i.e. a low-order expansion of the ki-
netic equation with the linearised collision operator both
in Legendre (with respect to h ) and in Sonine (with respect
to � ) polynomials. With flux-surface averaging, a linear
system of equations is obtained which can be closed by us-
ing the 3 mono-energetic transport coefficients calculated
numerically for different collisionalities and radial electric
fields. In particular, the parallel particle and heat viscosi-
ties defined by the 2nd Legendere coefficients of ,[i andj i in eq.(2) are obtained. The expansion of the linearised
collision operator couples the radial transport and parallel
flows of all species, and, consequently, the thermodynamic
fluxes are corrected and not the transport coefficients of
each species. An exception is the parallel electric conduc-
tivity where ion effects can be neglected. As dicussed in
the previous section, the radial transport in the stellarator
lmfp-regime is nearly unaffected by the momentum correc-
tion.

Both momentum correction techniques have been im-
plemented in the energy convolution based on databases of
the 3 mono-energetic DKES transport coefficients. Results
by using the [4] approach are given in [16, 17]. Recently,
benchmarking was initiated, however, this activity is only
in the preliminary phase (i.e. benchmarking the interfaces
to the DKES data and the energy convolution algorithms).
Rather preliminary results for the impact of the momen-
tum conservation technique [3] for the bootstrap current
density are shown in Fig. 3 both for the W7-X low- and
high-mirror configuration (equivalent to Fig. 2). In these
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Fig. 3 Bootstrap current density, k lm (normalised to the equiv-
alent tokamak value without momentum correction fornporqts

), vs. uav�w without (open symbols) and with
momentum correction (full symbols) for the W7-X low-
mirror (squares) and for the W7-X high-mirror configura-
tion (circles) at half the plasma radius based on Taguchi’s
momentum correction technique [3].

calculations, an additional impurity species (fully ionised
carbon) was introduced to describe the impact of xzy2{ on
the momentum balance. The radial electric field was cal-
culated from the ambipolarity condition, and, additionally,
the impurity density gradient from the condition of vanish-
ing radial impurity flux. The inverse gradient lengths, |)}�~�|
and �5}�~�� (with �-�����^�a����� ) are the same for all scenar-
ios. The plasma parameters correspond to low collisionali-
ties, and an “ion-root” ��� is established. Since the electron
transport coefficients in the ��~H� -regime are reduced with
increasing x y2{ (and also the bulk ion density), this com-
plex x7y2{ -dependence is eliminated by the normalisation of
the bootstrap current density (sum over all species) to the
equivalent tokamak value for the same x�y2{ for � � ��� , but
without momentum conservation. With this normalisation,
the impact of the momentum conservation on the bootstrap
current is highlighted.

Momentum correction has only a moderate impact on
the bootstrap current for both W7-X configurations; see
Fig. 3. With this correction, the bootstrap current is re-
duced (a slight increase, however, was found in NEO-2
calculations for a tokamak case with ������� ). Momentum
correction is largest at x y2{ ��� and becomes less impor-
tant at higher xIy2{ , and the optimisation criterion of min-
imised bootstrap current is not affected which is realised
in the W7x high-mirror configuration, at least for small� � . Furthermore, the radial particle and energy fluxes are
nearly identical with and without momentum correction as
was analysed in Sec. 2.

Also the NEO-2 version with the momentum con-
serving collision operator [11] will be included in the
benchmarking. NEO-2 expands the distribution function
to higher orders in the Sonine polynomials compared
to Refs. [3, 4] and solves for the full linearised colli-

sion operator. The distribution function is evaluated by
the field-line integration technique which leads to the
restriction ���+��� . In the strict sence, NEO-2 is not
a momentum correction technique since it is not based
on the 3 mono-energetic transport coefficients. With the
higher accuracy of the expansion, NEO-2 is an attractive
tool for benchmarking with both momentum correction
techniques described above.

4. Discussion/Conclusions
The benchmarking of momentum correction tech-

niques has been initiated and preliminary results have
been obtained. The particle and energy fluxes (and,
consequently, the ambipolar radial electric field) in the
stellarator lmpf -regime are only weakly affected by the
violation of momentum conservation in the simplified
pitch-angle collision operator used in evaluating the
mono-energetic transport coefficients in all codes included
in the ICNTS activity. The impact of momentum con-
servation on estimating the parallel electric conductivity
is very well known, and the correction is rather large.
Preliminary results for the bootstrap current indicate
a moderate reduction with momentum conservation
taken into account. Very good agreement is obtained in
the benchmarking of mono-energetic bootstrap current
coefficients [18]. Consequently, a detailed analysis of
momentum conservation effects is a logical next step in
the ICNTS.
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