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In the neoclassical ordering, an incompressible E × B drift is assumed in the 1st order drift-kinetic equation
(i.e. the approximation E × B/〈B2〉 is used). Then, the terms with (E × B) · ∇B disappear in both equations for ṗ
and v̇ allowing for a monoenergetic treatment (with a conservative formulation of the equations of motions), as
it is used e.g. in DKES. As a consequence, the magnetic moment is not an invariant in this approximation. For
large radial electric fields, however, this ordering scheme is violated since the (E × B) · ∇B term in ṗ becomes
comparable with the mirror term (∝ B · ∇B). The impact of this simplification is tested by strictly local δ-f
Monte Carlo techniques (i.e. with ṙ = 0 for the equation of motion in 1st order) where the E × B drift is treated
in compressible and incompressible form (both completely conservative) for large radial electric fields.
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1 Introduction

The International Collaboration on Neoclassical Trans-
port in Stellarators (ICNTS) was initiated in 2000. There
is a subtle inconsistency in the way the effect of large radial
electric fields are handled in obtaining neoclassical estima-
tions of transport coefficients. Rather than being a limita-
tion of the theory itself, the complication arises from some
simplifying approximations used. The electric field enters
the calculation through the E×B drift, VE = E×B/B2, and
the small gyroradius ordering or drift ordering assumes
that the ratio of this drift to the thermal speed of particles
is of 1st order, i.e. VE/vth ∼ ρ/L ∼ ωth/Ω = δ << 1, where
ρ is the thermal gyroradius, L a characteristic plasma scale
length and ωth and Ω the transit frequency and gyrofre-
quency respectively. This approximation implies that the
radial electric field is not so large as to distort gyration
and varies slowly in time. The drift ordering is not very
stringent, and is easily fulfilled even at the low-order elec-
tric field resonances (where the poloidal component of the
drift speed vanishes) Eres = ιvBr/R since VEres/vth = ιr/R,
where r/R is the inverse aspect ratio of the considered flux
surface and ι its rotational transform.

In the drift ordering approximation particle motion is
averaged over the the small gyro-scale and the resulting ki-

author’s e-mail: V.Tribaldos@ciemat.es

netic equation, now describing the distribution of guiding
centers, is known as the drift kinetic equation (DKE) [1, 2].
Unfortunately, even with the drift ordering approximation
solving the DKE is a daunting task. The inhomogeneity of
the magnetic field along with the non-linearity of the col-
lisional term makes the DKE a non-linear partial differen-
tial equation in a six dimensional space f = f (r, v, p, t),
r being the guiding center position in 3D space, v and
p = v·B/v its speed and pitch angle in velocity-space, and t
the time. The central point of neoclassical theory is solving
this equation to obtain different flux-surface-averaged mo-
ments of its solution. To this end the distribution of guiding
centers is linearized around a local Maxwellian distribution
and several approximations are made in the drift motion of
guiding centers. In the drift ordering approximation, the
total energy conservation, E = mv2/2+qΦ with E = −∇Φ,
translates into an equation for the variation of the kinetic
energy which is proportional to the divergence of the E×B
drift, v̇ = v(1 + p2)/4∇ ·VE (notice that drift ordering pre-
cludes rapid variation of the magnetic and electric fields.
Whenever the E×B drift is incompressible, ∇·VE = 0, the
total energy and the kinetic energy are conserved, which
allows for quite some simplification in solving the DKE.
Not only the speed of particles can be considered as a pa-
rameter, allowing for a mono-energetic treatment, but also
the collision operator can be approximated by only its pitch
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angle scattering part. However, a direct calculation shows
that ∇ · VE = −2VE∇ ln B which in general is different
from zero, thus to retain the benefits of incompressibility
usually the exact drift VE = E × B/B2 is approximated by
VE = E × B/〈B2〉. Since the magnetic field gradient is de-
termined by the device’s configuration the incompressible
approximation restricts the usual neoclassical treatment to
small radial electric fields.

The purpose of this work is to shed some light on the
effect of the incompressible E × B flow for a wide range
of radial electric fields and its impact on the determina-
tion of the mono-energetic particle diffusion coefficient,
D∗. In Sec. 2 the basic equations of motion are discussed
and a local δ f Monte Carlo [3, 4] (MC) technique capa-
ble of dealing with compressible and incompressible flows
(both completely conservative) is presented. Results of
the comparison between the DKES (Drift Kinetic Equation
Solver) [5, 6] and the new δ f MC codes for different con-
figurations will be shown is Sec. 3. Finally, Sec. 4 contains
some discussion of the results.

2 Basics

The starting point of neoclassical transport theory is the
DKE, that can be formally written as [2]

d f
dt

= ṙD · ∇ f + ṗ
∂ f
∂p

+ v̇
∂ f
∂v

= C( f , f ) (1)

where ṙD = vD, ṗ and v̇ are the drift speed and the
time derivatives of the pitch (related to the conservation
of the magnetic moment µ = mv2

⊥/2B) and the kinetic
energy (derived from the conservation of the total energy
E = mv2/2 + qΦ) given by:

vD = pv
B
B

+ VE +
mv2

2qB3 (1 + p2) B × ∇B (2)

ṗ = −
v

2B2 (1 − p2) B · ∇B −
p

2B
(1 − p2) VE · ∇B(3)

v̇ = −
v

2B
(1 + p2) VE · ∇B (4)

and C( f , f ) is a collision operator.
Since VE · ∇B = −B/2∇ · VE the second term in the

r.h.s. in Eq.3 and Eq.4 depend explicitly on the compress-
ibility of the E × B flow. The procedure used to solve the
DKE consists of linearising the distribution of guiding cen-
ters, f , in Eq. 1 with respect to the drift ordering small
parameter δ = ρ/L << 1 as f = f0 − δ f1(∂ f0/∂rr). For sta-
tionary conditions, i.e. neglecting the explicit time depen-
dence, ∂ f /∂t, the solution to the zero order, δ0, equation
is identically satisfied by the local Maxwellian f0 = fM .
Therefore, the goal is to find the solution, f1, to the first
order DKE:

vs
D · ∇rs f1 + ṗ

∂ f1
∂p

+ v̇
∂ f1
∂v
−C( fM , f1) = vr

D (5)

Notice that the full first order distribution depends on the
radial gradients of the zero order Maxwellian distribution,
and that the inhomogeneous term is the radial drift of guid-
ing centers vr

D, thus the radial dependence enters the equa-
tion just like a parameter. Therefore, Eq. 5 describes a
diffusion process in phase space rather than in real space.
Different methods are usually applied to solve the Eq. 5,
each with its strengths and drawbacks: i) analytical calcu-
lations [1]; ii) explicit spectral procedures, expanding f1 in
a base of eigenfunctions (like the DKES code [5, 6]) and
iii) Monte Carlo techniques [7]. Analytical solutions are
usually restricted to simplified magnetic fields and colli-
sionality regimes, on the other hand explicit and MC nu-
merical methods can deal with realistic configurations for
broad collisionality ranges, but are extremely time con-
suming and sometimes not very accurate (e.g. non diag-
onal transport matrix elements in MC.

The usual approximation, as for example is done in
DKES code, for computing the diffusion transport coeffi-
cients consists in neglecting ∇ · VE in equations 3 and 4,
i.e. considering the E×B flow incompressible. Since v̇ = 0,
the energy in Eq. 5 enters only as a parameter, once the col-
lision operator is approximated by just its pitch-angle scat-
tering part, and the coefficients are obtained by the con-
volution of mono-energetic solutions with the Maxwellian
distribution. The price to pay in this approximation is that
the radial electric field cannot be very large, and that the
magnetic moment µ is not conserved (see Eq. 3). To check
the approximation made by DKES for the mono-energetic
diffusion coefficient for large radial electric fields it would
be desirable to benchmark it against a MC type calcula-
tion with and without assuming ∇ · VE = 0. In usual full
f [7] MC calculations, based on fitting the slope of the time
dependence of the radial broadening of a test particle en-
semble (diffusion in real space), it is easy to include the
full set of equations (conserving µ and E. However, when
the radial electric field becomes large particles can win or
lose kinetic energy as they move radially because of their
drifts, thus making the calculation non-mono-energetic.
The method proposed here to make such comparison is us-
ing the method of characteristic to solve partial differential
equations like Eq. 5, which is at the base of the δ f MC
technique.

Formally, the solution to an equation of the type
a(x, y, ...)∂ f /∂x + b(x, y, ...)∂ f /∂y + ... = g(x, y, ..., f ) is a
surface S such that at each point (x, y, ...) on S , the vec-
tor V = (a(x, y, ..), b(x, y, ...), ..., g(x, y, .., f )) lies in the tan-
gent plane. Such surface can be constructed by the union
of curves C parametrized by s such that at each point
on the curve, the vector V is tangent to the curve. In
particular C = {(x(s), y(s), ..., g(s))} will satisfy the fol-
lowing system of ordinary differential equations:dx/ds =

a(x, y, ...); dy/ds = b(x, y, ...); ...; du/ds = g(x, y, ..., f ),
called characteristic curves, and the solution is f (x, y, ...) =

u(x, y, ...). Rephrasing this method for the collisionless
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DKE means solving the system of equations:

drs
D

dt
= vs

D ;
dp
dt

= ṗ ;
dv
dt

= v̇ ;
du
dt

= vr
D (6)

f1 = u being its solution. Please notice that even though
the system of equations 6 are the equations of motion of
the guiding center, and the characteristic curves are the tra-
jectories, thus clarifying the link with a MC particle sim-
ulation view, there is no equation for the radial drift rr

D.
Particles cannot escape the birth flux surface and no radial
broadening calculation can be done. However, the solution
f1 = u ∼

∫
vr

Ddt directly depends on the bounce-average
of the radial drift speed along the parallel motion. The MC
implementation is straightforward; the system of equations
is integrated (taking care to retain the conservative nature
of the motion) for an ensemble of markers (since no ra-
dial motion is included they cannot be regarded as particles
anymore), all sharing the same energy and flux surface but
with random toroidal and poloidal position and pitch. The
effect of collisions in the DKE is simulated by applying a
pitch angle collision operator [7].

3 Results

Three different magnetic configurations were studied with
quite different B structures, namely: a tokamak with the
same aspect ratio and rotational transform as the W7-AS
stellarator, the LHD heliotron configuration with major ra-
dius Raxis = 3.75 m, and the W7-X standard configuration.
The impact of the incompressibility of the E × B flow was
studied by evaluating the diffusion coefficient for a wide
range of radial electric fields. For each case two differ-
ent collisionalities were chosen corresponding to the be-
ginning of the ripple regime, ν/v = 10−3m−1, and one at
the beginning of the lmfp, ν/v = 10−4m−1. The δf MC in-
tegrates 1024 markers for three collisional times divided in
eight groups of 128 markers each. The error bar is obtained
with the standard error from the eight estimations.

As was noted long ago, e.g. [8] Eq. 5 has a singularity
when the poloidal component of the drift speed vanishes,
which corresponds to resonant radial electric field values.
In the following the radial electric field has been normal-
ized to the first toroidal resonance Eres = ιvBr/R.

In Fig. 1 the diffusion coefficient at half radius, r/a =

0.5, for an ideal tokamak configuration, with B(r, θ) =

B0(1 + r/R cos θ), R = 2m, a = 0.2m, and ι = 0.51. This
was selected because radial excursions from the flux sur-
faces are small and only one electric field resonance exists.
There is a good agreement between DKES code results and
the δf MC incompressible calculation; both displaying a
peaked feature around the resonance followed by a strong
decrease because of the disappearance of banana orbits.
When compressible effects are included in the calculation
the resonance is smoothed as well as the later sharp diffu-
sion decrease flattened. The reason being the variation in
the kinetic energy of the particles, v̇ in Eq. 4, as can be seen

in Fig. 2. The broadening of the kinetic energy spectra, due
to v̇, reduces the number of particles at the resonant field,
Er/Eres = 1 but also pushes some particles to energies that
resonate at larger values of Er/Eres. At very large radial
electric fields there is a systematic difference between the
DKES and MC results which is attributed to numerical dif-
fusion. Nevertheless, please notice the rather small values
of the diffusion coefficient.

The results for the other two devices (see Figs. 3 and
4) are similar to the tokamak result, apart from the differ-
ent resonance structure due to their broader magnetic field
spectra. The helical resonance peak at Eres = (Nperiods −

mι)vBr/R can be clearly identified. As in the tokamak case
the flattening is more pronounced at smaller collisionali-
ties, pitch angle scattering is less efficient in moving parti-
cles out of the resonance. The incompressible approach
is rather good for small Er, but unexpectedly it is also
working at large radial electric fields, provided that there is
no resonance overlapping; see the almost mono-energetic
structure of the PDF in Fig. 2 at Er/Eres = 4. Finally, there
is an inconsistency in comparing the mono-energetic diffu-
sion coefficients of the DKES and incompressible δf codes
with the compressible result since the latter, as has been
shown, is not really mono-energetic. Moreover, consider-
ing only the pitch-angle part of the collision operator close
to the resonance is not justified [8, 7].
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Fig. 1 Diffusion coefficient, normalized to the tokamak plateau,
for the tokamak configuration versus the radial electric
field, normalized to the first toroidal resonance Eres, for
ν/v = 10−3m−1 (top) and ν/v = 10−4m−1 (bottom) ob-
tained with the DKES code (circles) and the δf MC in-
compressible (squares) and compressible (triangles) ap-
proaches.
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Fig. 2 Probability distribution function of velocities for ν/v =

10−3m−1 of Fig. 1 in the compressible approach.

4 Discussion

The aim of this work was to check the accuracy of local
mono-energetic transport coefficient calculations for large
radial electric fields. On the one hand DKES estimations
are mono-energetic and local and transport is due to a
pitch-angle diffusion process in phase space. But, the E×B
term is treated as incompressible, ∇ · VE = 0, to keep the
kinetic energy constant. On the other hand, common full- f
MC based calculations are not exactly local, because radial
space broadening is used to describe the diffusion process.
And, again their applicability is limited to consider small
radial electric fields to keep particles’ kinetic energy al-
most constant during their radial drifts. Here, a fully con-
servative δf MC code was introduced where local diffu-
sion is computed in phase-space with particles (markers)
remaining indefinitely on their birth flux surface (solving a
general MC problem with particle losses).

The impact of the incompressible E × B flow ap-
proximation was tested comparing DKES results with the
strictly local δf MC where the E×B drift is treated in com-
pressible and incompressible form for large radial electric
fields and several magnetic field configurations.

It was found that considering ∇ · VE = 0 is indeed
a good approximation for small radial electric fields, as
expected, but also for large Er far from the resonances.
This also serves as a benchmark between DKES and the δf
MC. The discrepancy between the results with and without
∇ · VE = 0 close to the resonance is due to the variation of
the kinetic energy. This results calls into question the usual
mono-energetic calculations, which, to be safe, should be
restricted to Er < 0.5 − 0.7 Eres.
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Fig. 3 Diffusion coefficient, normalized to the tokamak plateau,
for LHD configuration with Raxis = 3.75 m versus the
radial electric field, normalized to the first toroidal reso-
nance , and ν/v = 10−3m−1 (top) and 10−4m−1 (bottom)
for the DKES code (circles) and the δf MC incompress-
ible (squares) and compressible (triangles) approaches.
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Fig. 4 Diffusion coefficient , normalized to the tokamak plateau,
for W7-X standard configuration versus the radial elec-
tric field, normalized to the first toroidal resonance, and
ν/v = 10−3m−1 (top) and 10−4m−1 (bottom) for the DKES
code (circles) and the δf MC incompressible (squares)
and compressible (triangles) approaches.


