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Intermittent dynamics of nonlinear resistive tearing modes at
extremely high magnetic Reynolds number
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Nonlinear dynamics of the resistive tearing instability in high magnetic Reynolds number (R m) plasmas
is studied by newly developing an accurate and robust resistive magnetohydrodynamic (MHD) scheme. The
results show that reconnection processes strongly depend on R m. Particularly, in a high Rm case, small-scale
plasmoids induced by a secondary instability are intermittently generated and ejected accompanied by fast shocks.
According to the intermittent processes, the reconnection rate increases intermittently at a later nonlinear stage.
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The tearing instability is one of the most basic and
important mechanism of plasma dynamics both in fusion
and astrophysical processes. Particularly, resistive tearing
modes have been well investigated theoretically and nu-
merically as the most basic modes of the tearing instability
[1, 2, 3]. However, our understanding of the nonlinear dy-
namics of resistive tearing instability in case of magnetic
Reynolds numbers, Rm, as high as the practical systems is
still severely limited. A major reason of that is attributed to
the fact that the numerical resolution of simulations is too
strongly restricted to resolve a thin current sheet, which is
believed to be formed in the realistic systems. Therefore,
in this study, an accurate and robust resistive MHD scheme
is developed, and nonlinear simulations at the highest-ever
resolution are carried out in order to find a new dynamic
regime of the resistive tearing instability.

First, we develop an accurate, efficient, and robust nu-
merical solver for resistive compressible magnetohydrody-
namics (MHD). The Harten-Lax-van Leer-Discontinuities
(HLLD) approximate Riemann solver [4], which is one of
the promissing shock capturing solver for ideal MHD from
the viewpoint of its resolution, robustness, and efficiency,
is applied to ideal terms of resistive MHD. Also, higher-
order accuracy is achieved by the MUSCL method with
limiters. As a divergence cleaning method, hyperbolic di-
vergence cleaning method [5] is adopted. Resistive terms,
on the other hand, are calculated by a classical centered
finite difference method. In order to confirm the applica-
bility of the present strategy to resistive MHD, severanl nu-
merical tests are performed. As a first test, nonlinear sim-
ulations for the resistive tearing mode with a quite small
apmplitude are compared with the linear theory [1]. When
Rm is large enough (about more than 105), the results of
both are almost corresponding. We also perform another
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test of which both the present scheme and the (fully) cen-
tered finite difference scheme apply the nonlinear simula-
tion of the tearing instability for a linear force free mag-
netic field. The results of both are almost the same at an
initial stage, while the centered finite difference scheme is
brokendown at a later stage. Thus, it is concluded that the
present scheme achieves a high degree of the numerical ac-
curacy and robustness even for resistive MHD processes.

Subsequently, nonlinear simulations of resistive tear-
ing modes are performed in a simple 2D slab geometry
with uniform resistivity η (≡ R−1

m ). The initial condition is
given by the Harris equiribrium, B0x = tanh(y/δ), where
the thickness of the initial current sheet δ is set to 0.5.
The simulation box is such that −12.8 ≤ x ≤ 12.8 and
−6.4 ≤ y ≤ 6.4. The periodic boundary condition is
applied to x direction, while the symmetric condition is
adopted for y boundary. In order to resolve the resistive
layer sufficiently, non-uniform grid is adopted for y direc-
tion. The finest grid spacing is about 0.0102 for x direc-
tion and 0.0005 for y direction. In this paper, two cases
of relatively low Rm, Rm = 103, and relatively high Rm,
Rm = 104, are presented in particular. The nonlinear tear-
ing mode at Rm = 103 steadily grows and is almost satu-
rated as expected from the previous works. On the other
hand, it is found that at a high Rm, Rm = 104, a new dy-
namics arises after the formation of a thin current sheet at
the initial nonlinear stage. Fig. 1 show the current den-
sity and mass density distribution around the current sheet.
We find that many secondary plasmoids are intermittently
created in the thin current sheet and interacted with each
other. Through the nonlinear interaction of the plasmoids,
various fine structures associated with fast shocks are gen-
erated even in the uniform η model. Fig. 2 show the tem-
poral evolution of the maximum electric field in the current
sheet induced by the resistivity at both Rm cases. Though
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Fig. 1 Distributions of (a) the current density and (b) the density
at Rm = 104

Fig. 2 Time evolution of the maximum resistive electric field in
the current sheet at Rm = 103 (green line) and 104 (red
line).

multiple X points are advected at Rm = 104, the resistive
electric field is almost considered as the reconnection rate.
It is found that the reconnection rate is much enhanced in-
termittently at Rm = 104 even though the linear growth
rate of the resistive tearing instability is reduced with an
increasing of Rm.

The results indicate that the nonlinear dynamics at a
high Rm is much different from our conventional under-
standing based on the linear theory and the simulations at
modest value of Rm. It strongly suggests that the realistic
MHD dynamics at extremely high Rm (e.g., more than 1014

in the solar corona!) is still veiled, and it is likely that some
hierarchical MHD dynamics is involved to connect macro-
scale plasma evolution and micro-scale kinetic processes.
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