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Effects of the stochasticity of magnetic field lines on transport properties are investigated. In a high- LHD 

plasma, the structure of field lines in the edge region becomes stochastic by finite- effects but the finite pressure 

gradient exists in the region. The radial diffusion coefficient and the Kolmogorov length of stochastic field lines are 

estimated. In the edge region, the radial diffusivity of stochastic field lines becomes large and the Kolmogorov 

length becomes short due to the increased . In the region, the radial heat diffusivity becomes large due to the 

stochasticity of field lines. 
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1. Introduction 

Generating and keeping clear flux surfaces are an aim 

of magnetic confinement researches, because the 

stochasticity of magnetic field lines leads the degradation 

of the confinement connecting between core and edge 

region. There are some analytical works investigating the 

impact of the stochasticity of magnetic field lines on the 

radial transport property [1-4]. In those works, Rechester 

and Rosenbluth pointed out the radial heat diffusivity due 

to stochastic field lines relates to both the stochastic 

diffusion parallel and perpendicular to the magnetic field 

[1].  

The stochasticity of field lines due to finite- effects 

is an intrinsic property in stellarator/heliotron. Since the 

pressure-induced perturbed field breaks the symmetry of 

the field, the structure of magnetic field lines becomes 

stochastic, especially in the edge. In order to aim 

stellarator/heliotron reactors, the study of the transport due 

to stochastic field lines is critical and urgent issue. 

The LHD is an L=2 heliotron device. A numerical 

code to calculate 3D MHD equilibrium without the 

assumption of nested flux surfaces predicts the field 

structure becomes stochastic due to the increased . 

In addition, in numerical simulations, the finite pressure 

gradient ∇p can exist in the stochastic region [5]. In the 

edge region of LHD plasmas, the connection length of 

stochastic field lines is still long compared to the parallel 

electron mean free path. That is, there is a possibility to 

keep the finite pressure on stochastic file lines. LHD 

experiments suggest the plasma pressure spread over the 

region expected stochastically [7]. This supports above 

speculation. However, that speculation does not include the 

effect of stochastic diffusion perpendicular to the field. 

In this study, the radial heat diffusivity due to 

stochastic field lines is investigated in a high- LHD 

equilibrium. In next section, the degradation of flux surface 

quality due to finite- effects is studied in a LHD 

configuration. Then, the diffusive property of stochastic 

field lines is studied. Lastly, results are briefly summarized 

and shown future subjects. 

2. Degradation of flux surface due to plasma  

Figure 1 shows Puncture maps of magnetic field lines 

for (a) the vacuum field and (b) a finite- equilibrium on 

the horizontal cross section. The configuration is an inward 

shifted configuration (Rax=3.6m, =1.254, BQ=100%). The 

profile of the normalized plasma pressure p/p0  is also 

plotted as the function of R on the equatorial plane. The 

finite- field is calculated by HINT2, which is a 3D MHD 

equilibrium calculation code without the assumption of 

nested flux surfaces [5]. Since HINT2 uses the real 

coordinate system, it can treat the magnetic island and 

stochastic field. The diamagnetic beta  β dia  is about 3%. 

For the finite- the region with closed flux surfaces 

decreases and field lines in the edge region becomes 

stochastic. Chains of small magnetic islands appear. The 

finite plasma pressure exists in spite of field lines 

becoming stochastic in the edge (see fig. 2(b)). Two arrows 

indicate the position of the vacuum last closed flux surface 

(LCFS) on the equatorial plane. The finite pressure spreads 

over the vacuum LCFS. 

In fig.2, profiles of the electron temperature Te 

(#46465, t=1.625), the distance along the magnetic field 

LC started along R on the equatorial plane, contour lines 

with p=const. (Z<0) and puncture map of field lines 

(Z>0) for comparison are shown, respectively. The length 

of the calculation tracing field lines is limited to 2000m. 
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(a) vacuum 

 

(b) <>dia~3% 

 

Fig.1 Puncture maps of magnetic field lines for the 

vacuum field and a finite- equilibrium (<>dia~3%) are 

plotted at the horizontal cross section (=/M). A green 

line indicates the normalize plasma pressure p/p0 as the 

function of R on the equatorial plane. Two arrows in figs 

indicate the position of the vacuum LCFS on the 

equatorial plane. 

 

Fig.2 Profiles of the electron temperature Te (#46465, 

t=1.625) and the distance along the magnetic field LC 

on the plane corresponding to fig. 1(b) are plotted as 

the function of R. Contour lines with p=const. are also 

shown for the comparison. 

 

Fig.3 contour lines with different Lin  (Z>0 and Z<0) 

are shown at the plane corresponding to fig. 1. Green 

lines indicate contour lines with Lin =30m and blue lines 

indicate Lin =300m. Lines in the edge are different. 

In figs, contour lines p=const. exists in the stochastic 

region with keeping the surface structure. HINT2 

calculates converged pressure distribution in the finite- 

field by 

 

 

 

     (1) 

 

 

 

where, i means a step number of iterations, LC  is the 

connection length of a magnetic field line starting each 

grid point (LC  is finite for open magnetic field lines), and 

Lin  is prescribed as an input parameter to control the 

calculation. Equation 1 calculates the ‘averaged’ plasma 

pressure on the flux tube. This corresponds to simulate the 

radial diffusion of field lines. In order to consider this 

effects, profiles of plasma pressure with different Lin  

(=30m and 300m) are shown in fig. 3. For Lin =300m, 

contour lines are different, especially in the stochastic 

region. If the distance along 𝐵 is shorter than Lin , the 

averaged pressure p  is set to zero. In fig. 2, since LC  is 

10
1
~10

2
m, the distribution of p  is sensitive to Lin . This 

study has an assumption that the electron temperature is 

low because of the consideration of high- experiments 

(see fig. 2). Thus, we adopt Lin  is 30m. As a result, 

contour lines of p/p0 is consistent to the temperature 

profile. 

In order to study the degradation of flux surfaces due 

to the increased , the change of positions of the LCFS and 

magnetic axis is shown in fig. 4 as the function of  β dia . 

At first, the change of the outward torus is noted. For 

low- equilibria (< 1%), the LCFS slightly expands 

compared to the vacuum field. Then, increasing  (>1%), 

the LCFS still sustains near the vacuum LCFS. For high- 

(>2%), the LCFS shrinks sharply. On the other hand, the 

inward region, the LCFS degrades monotonically due to 

the increased . Thus, we guess the degradation of the 

transport is significantly important at high- (>2%). The 

magnetic axis also monotonically changes due to the 

increased . At a high- ( β dia ~3%), the Shafranov shift 

∆/a is about 0.5. However, the MHD equilibrium does not 

collapse and it is sustained. 

 

pi+1 = p =
 ℱpi dl

B
Lin

−Lin

 
dl
B

Lin

−Lin

 , 

F=  
1:for 𝐿𝐶 ≥ 𝐿𝑖𝑛
0:for 𝐿𝐶 < 𝐿𝑖𝑛
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Fig.4 The change of positions of inward (red) and 

outward (green) LCFS on the plane corresponding to 

fig. 1is plotted as the function of  β dia . The shift of 

the axis is also plotted for the reference (blue).  

 

Fig.5 The radial profile of the diffusion coefficient 

DFL  is plotted as the function of R. The puncture map 

of field lines is also plotted as the reference. 

 

3. Radial heat diffusivity due to stochastic field 

lines 

The radial heat transport increases as it gains the 

stochasticity. In the collisionless plasma, where the 

electron mean free path e is very long, the radial heat 

diffusivity χr  due to ‘only’ the stochasticity of magnetic 

field lines is given by 

 χr =  DFL vth    (2) 

where vth  is the electron thermal velocity and DFL  is the 

diffusion coefficient of magnetic field lines and defined by 

 DFL =   Δr2 /LC    (3) 

LC  is the correlation length to calculate the diffusion 

coefficient. Since χe  is the contribution of only the 

stochasticity of magnetic field lines, the effective radial 

transport χeff  is given by 

 χeff  = χr  + χ⊥.   (4) 

On the other hand, in the collisional plasma, Krommes et 

al. identifies three different subregimes with decreasing 

collisionalty [4], which are fluid regime (τ⊥ <τ∥<τk ), 

Kadomtsev-Ppgutse ( τ∥ < τ⊥ < τk)  and 

Rechester-Rosenbluth ( τ∥ < τk < τ⊥ ) regime. In typical 

parameters of LHD experiments, the collisionalty is 

Rechester-Rosenbluth (RR) regime in the region expected 

stochastically. The radial heat diffusivity due to the 

stochasticity of field lines is given by 

 χr =  DFLχ∥/Lk    (5) 

in the RR regime, where Lk  is the Kolmogorov length. 

The Kolmogorov length Lk  is a characteristic parameter 

to mesure the stochasticity [8]. Thus, equation 5 means the 

parallel contribution of the stochasticity is very important 

as well as the perpendicular contribution, because Lk  

plays the role of the correlation length along field lines. 

In order to study χr , the diffusion coefficient DFL  is 

estimated at first. In fig. 5, the radial profile of the 

diffusion coefficient is plotted as the function of R. The 

puncture map of field lines is also plotted as the reference. 

The procedure to calculate the mean squared radial 

displacement  ∆r2  of field lines is following; (i) the 

distribution of the normalized toroidal flux s = Φ Φedge  

is given at first, where Φ is calculated by integrating 

inside contour lines at p=const. (ii) then, the normalized 

minor radius ρ is calculated and field lines are traced  

from distributed points on =cont. plane. (iii) in the last, 

the mean squared displacement of  Δρ2  is calculated 

with tracing field lines and the distribution coefficient is 

given by 

 DFL = reff
2 Δρ2 /LC ,  (6) 

where reff  is the effective minor radius. In fig. 5, DFL  is 

small in clear flux surfaces. However, in the stochastic 

region, the diffusion coefficient increases rapidly toward 

the outside of the torus. In the stochastic region, it is 

expected the perpendicular diffusion is very large. 

    The Kolmogorov length  is also estimated to 

consider the parallel contribution of the stochasticity. In 

analyses of edge plasmas, especially the Dynamic Ergodic 

Divertor (DED), the Kolmogorov length is given by the 

quasi-linear form [4]. However, since the stochasticity in 

stellarator/heliotron is caused by pressure-induced 

perturbation, the number and amplitude of the mode of 

perturbations are unclear and the calculation of those 

values is difficult. Thus, we estimate the Kolmogorov 

length using a following definition, 

  

     (7) 

 

where, d is the circumference of small flux tube and l is 

the length of the flux tube. Using this definition, the impact 

d = d0exp  
l

Lk
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Fig.6 The radial profile of the inverse of the 

Kolmogorov length Lk  is plotted as the function of R. 

The puncture map of field lines is also plotted as the 

reference. 

finite- effects on Lk  is studied in vacuum configurations 

in LHD [7] and finite- equilibria in Wendelstein 7-X [8]. 

In fig. 6, the profile of the inverse of the Kolmogorov 

length is plotted as the same plot corresponding to fig. 5. 

The inverse of the Kolmogorov length rapidly becomes 

long exponentially. This suggests the stochasticity of field 

lines increases with short length. In the outermost position 

to calculate Lk  (R=4.64m), Lk  is about 11m. 

Finally, we estimate the radial heat diffusivity χr . At 

R=4.64m, DFL  and Lk  are about 10
-4

 and 11, respectively. 

In fig. 2, the electron temperature is about 20~30eV. If 

Te = 30eV  and ne =10
19

m
-3

, χr ~25m
2
/s. This is very 

large compared to χeff  of the local transport analyses in 

the plasma core [9]. The comparison of the experiments 

and other estimation, which are obtained from the transport 

code for the edge plasma [10], is a future subject. 

 

4. Summary 

    The stochasticity of magnetic field lines and effects on 

the transport properties due to finite- effects are 

investigated. Flux surfaces keeps clear structure until the 

intermediate- (<2%). However, for high-b, flux surfaces 

rapidly degrades due to the increased b. Characteristic 

properties, which are the diffusion coefficient of magnetic 

field lines and the Kolmogorov length are estimated. In a 

high-b equilibrium, stochastic properties appear in the edge. 

Using Rechester-Rosenbluth formulation, the radial heat 

diffusivity due to only the stochasticity of magnetic field 

lines. The estimated diffusivity is very large. It is necessary 

the comparison to the experiments and other estimation. 
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