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The response of toroidal plasmas to three-dimensional magnetic error fields is studied by using Ideal
Perturbed Equilibrium Code (IPEC). Since the toroidal plasmas are highly sensitive to small error fields, the
perturbation theory is efficient and useful to describe the equilibrium ∇P = J × B in the presence of error
fields. The perturbed force balance equation in ideal MagnetoHydroDynamics (MHD) is solved by augmenting
a stability code and by constructing the interface between plasma and external system. In an ideally perturbed
equilibrium, a shielding current arises on a rational surface to prevent an island from opening. When error
fields reach a critical magnitude, the shielding current will be dissipated and an island will open. This effect
of error fields can be greatly mitigated by adjusting currents in auxiliary coils to reduce the shielding current,
or equivalently the resonant field. From the coupling between the resonant field and error fields, the effects
of various error fields on toroidal plasmas were studied. The most important external field is almost always
localized on the outboard midplane, which gives an important implication to the study and control of the response
of toroidal plasmas to error fields.
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The magnetically confined toroidal plasmas, such as
tokamaks and stellarators, are highly sensitive to externally
driven magnetic perturbations. This sensitivity implies
that the response of plasmas to small magnetic perturba-
tions is a critical issue in design and control of equilibrium
[1, 2, 3, 4, 5]. The small magnetic perturbations always
exist in toroidal devices due to error fields, such as, imper-
fections of primary magnets and other conducting compo-
nents. When an external perturbation occurs, plasma re-
sponds to it and relaxes to a new equilibrium state. Since
the perturbations are in practice very small compared with
the field of the original equilibrium, the perturbation theory
is effective to describe the response of plasmas.

The perturbed force balance equation is given by

f (ξ) = −∇δP + J × δB + δJ ×B = 0 (1)

in ideal MagnetoHydroDynamics (MHD). Using Maxwell
relations and adiabatic plasma response, δJ = (∇ ×
δB)/µ0, δB = ∇× (ξ×B) and δP = −ξ ·∇P−γP(∇ ·ξ),
the force balance equation becomes a vector differential
equation for the plasma displacement ξ. Assuming that the
plasma conserves its two independent profiles, rotational
transform ι(ψ) and pressure p(ψ), then the same equation
can be derived from the theory of ideal, linear MHD stabil-
ity. Through minimization of a perturbed potential energy
δW = −1/2

∫
dx3ξ · f (ξ), the exact same equation for ξ

can be obtained. Therefore, an existing code in the stabil-
ity analysis can be used to solve the problem of perturbed
equilibria. Only the interface between plasma and external
system is required to obtain an perturbed equilibrium given
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an external error field.

The Ideal Perturbed Equilibrium Code (IPEC) [6]
modifies and augments the DCON ideal MHD stability
code [7]. For a given axisymmetric equilibrium, the use of
DCON gives a set of M plasma displacements ξi(ψ, θ, ϕ),
which is the set of M ideal MHD eigenmodes for a given
toroidal harmonic number n, where 1 ≤ i ≤ M and
M is the number of poloidal harmonics retained. Here
(ψ, θ, ϕ) are magnetic coordinates which are straight on
the field line. Each of these displacements ξi is associ-
ated with a certain deformation of the plasma boundary,
ξi · nb ≡ (ξi · n)(ψb, θ, ϕ), where ξi is evaluated on the
unperturbed plasma boundary at ψ = ψb and nb is the nor-
mal to the unperturbed plasma boundary. Each of these
M displacements of the plasma boundary ξi · nb defines
a perturbed equilibrium if an external magnetic field pro-
duces a required force to support it. That is, the set of M
ideal MHD eigenmodes found by DCON defines a set of
M neighboring perturbed equilibria. Each of the neighbor-
ing equilibria is supported by an external magnetic field
and has the same profiles of ι(ψ) and p(ψ) as the unper-
turbed equilibrium; only the shape of the plasma has been
changed.

A plasma displacement determines a magnetic pertur-
bation δB = ∇ × (ξ ×B), so IPEC uses the displacement
of the plasma boundary ξ · nb to determine a part of the
perturbed magnetic field that is normal to the unperturbed
plasma boundary, δB · nb, and a part that is tangential to
the plasma boundary, nb × δB(p). Since the normal field
δB · nb is continuous across the plasma boundary and the
control surface, δB · nb then gives a unique vacuum field
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outside the plasma, δB(vo), that vanishes at infinity. The
difference between the tangential field infinitesimally out-
side the control surface nb×δB(vo) and the tangential field
on the plasma side of the control surface nb × δB(p) de-
termines an external surface current on the control surface,
µ0K

x = nb × δB(vo) −nb × δB(p). Once K x is known, the
externally produced normal magnetic field δBx ·nb can be
found by ∇ × δBx = µ0J

x in vacuum. Note that the exter-
nal field δBx designated by superscript x is a vacuum field
without plasma response, compared with the total field δB.

Each of the M neighboring equilibria calculated by
DCON has a unique distribution of the external normal
magnetic field δBx

i · nb, where 1 ≤ i ≤ M, that must
be produced by currents outside the plasma to sustain that
equilibrium. If an external magnetic perturbation, such as
that due to a magnetic field error δBx · nb, is specified on
the unperturbed plasma boundary, this perturbation can be
expanded as δBx · nb =

∑M
i=1 ciδB

x
i · nb, with expansion

coefficients ci. If this is done, the plasma displacement that
gives the perturbed equilibrium produced by the field error
is ξ(ψ, θ, ϕ) =

∑M
i=1 ciξi(ψ, θ, ϕ). This is the method used

by IPEC to find the perturbed equilibrium associated with
a given magnetic field error [6].

The normal total magnetic fields of the M neighboring
equilibria can be represented by

(δB · nb)(θ, ϕ) = Re


∑

m

Φmw(θ)ei(mθ−nϕ)

 , (2)

in Fourier space, where the weight function w(θ) =

1/(J(θ)|∇ψ|(θ)) with the Jacobian J(θ) is used for an or-
thogonal basis, by the definition of

∮
w fm fm′da = δmm′ on

the boundary surface, with fm = ei(mθ−nϕ).
The jump in the tangential field across the control

surface just outside the plasma gives a surface current
J = Kδ(ψ − ψb). The surface current can also be ex-
pressed as K = ∇κ(θ, ϕ) × ∇ψ with a surface current po-
tential κ(θ, ϕ). The potential κ(θ, ϕ) can be used for repre-
senting the surface current K by

κ(θ, ϕ) = Re


∑

m

Imei(mθ−nϕ)

 (3)

with the vector I having units of current. Combining the
total fluxes Φi and external currents I x

i of the M neighbor-
ing equilibria, one can obtain a plasma inductance matrix
Λ on the Fourier space, where the M poloidal harmonics
are retained. Λ gives the relation between an total flux and
an external current by Φ = Λ · I x. Similarly, the external
normal magnetic perturbation δBx · nb producing the sur-
face current K x can be expanded and related to the current
by Φx = L · I x, where L is a surface inductance matrix
since it depends only on the shape of the boundary surface.

The linear relation between an total flux Φ and an ex-
ternal flux Φx can then be written as

Φ = P ·Φx (4)

Fig. 1 The deformed plasma boundary of typical (a) NSTX (b)
DIII-D tokamak plasmas due to each intrinsic error field.
The scale is arbitrary.

with a permeability matrix P = Λ · L−1. If a magnetic
field error Φx is specified on the boundary, one can expand
it by Φx =

∑M
i=1 ciΦx

i =
∑M

i=1 ciP
−1 ·Φi, or equivalently by

Φ = P ·Φx =
∑M

i=1 ciΦi to obtain the perturbed equilibrium
by ξ(ψ, θ, ϕ) =

∑M
i=1 ciξi(ψ, θ, ϕ). Each actual flux Φi is

associated with a plasma displacement ξi through Eq. (2)
and δB = ∇ × (ξ ×B). This is how IPEC constructs the
interface and solve the perturbed equilibrium from a given
error field [6]. Fig. 1 shows the computational examples,
deformed plasma boundary of typical (a) NSTX [12] (b)
DIII-D [13] plasmas due to each intrinsic error field.

An important consequence when plasma is ideally
perturbed is a shielding current on a rational surface ι =

n/m to prevent a magnetic island from opening. This in-
dicates mathematically that the normal component of the
resonant field has to be vanished on the rational surface,
that is, (δB ·∇ψ)mn = 0. This constraint in ideal MHD en-
forces inner boundary condition and discontinuous tangen-
tial field across the rational surface. The jump of tangential
field is [8]

∆mn ≡
[
∂

∂ψ

δB ·∇ψ

B ·∇ϕ

]

mn
(5)

The shielding current js is related to the jump as

js =
∆mniei(mθ−nϕ)

µ0m(
∮

dS B2/|∇ψ|3)
δ(ψ − ψmn)B, (6)

where ψ is a toroidal flux. A total resonant field driving
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magnetic islands, (δB · n)mn, can be defined by the field
produced by the shielding current, ∇ × δB = µ0js. Note
that n is normal to a magnetic surface at ι = n/m, differ-
ently from nb normal to the plasma boundary.

The sustainment of the shielding current is important
to improve plasma performance since otherwise an island
would open and destruct flux surfaces. This happens when
error fields are larger than a critical magnitude. The impor-
tance of the shielding current, or equivalently the resonant
field has been recently verified in tokamak experiments of
locked modes [9]. The use of IPEC has shown that the ex-
ternal field driving the resonant field (δB ·n)mn can be well
described through perturbed equilibria.

A long standing supposition, which was supported by
cylindrical theory [10, 11], is that the total resonant field
driving islands, (δB · n)mn, is proportional to the resonant
component of the external field, namely, the external reso-
nant field, (δBx ·n)mn. When this supposition was applied
to mode locking experiments in DIII-D and NSTX, the
results were paradoxical. When the control coil currents
were optimized empirically, the external resonant field was
often increased–not decreased as the standard supposition
required. However, the IPEC calculation has shown that
the total resonant fields were indeed decreased consistently
when the control coil currents were optimized.

The failure in the previous method is due to the strong
coupling between the resonant field (δB · n)mn and the
external field (δBx · nb) specified here on the plasma
boundary. The poloidal harmonic coupling is very broad
and shifted to higher poloidal harmonics than expected, as
shown in Fig. 2 [6, 9].

The most important external field driving the total res-
onant field has to be defined through the coupling, that is,
by the first singular vector when decomposing the coupling
matrix C between the total resonant field (δB ·n)mn and the
external field on the boundary (δBx ·nb)mn. If one defines
B with the total resonant field on R rational surfaces, this
is written as

B = C ·Φx. (7)

The ith important mode can be also defined by the ith sin-
gular mode in the SVD (Singular Value Decomposition)
analysis of C. Note again that each ith important mode rep-
resents the external field on the plasma boundary, not the
total field including plasma response.

A practical way to describe the important modes is to
give the amplitude of the external field (δBx · nb) relative
to the plasma boundary in real space. If the most important
mode, or the first mode is highly dependent on equilibria
when it is mapped in real space, the correction of the mode
will be very difficult in practice. Fig. 3 shows the most
important external field for n = 1 in the (a) DIII-D and (b)
NSTX. The three-dimensional field can be constructed as
(δBx · nb)(θ, φ) = C(θ)cos(nφ) + S (θ)sin(nφ), where φ is
the polar toroidal angle. This has to be distinguished from
a magnetic toroidal angle, ϕ.
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Fig. 2 (a) The typical poloidal harmonic coupling spectrum be-
tween the Fourier components of the external error field
on the plasma boundary (δBx · nb)mn and the total reso-
nant field, which is here measured by ∆21 and ∆31.

Fig. 3 The most important external field driving the total reso-
nant field on rational surfaces, in the (a) DIII-D and (b)
NSTX. The three dimensional distribution can be con-
structed by δBx · nb = A(θ)cos(φ) + B(θ)sin(φ) relative
to the plasma boundary (black line).

An important implication is that the most important
external field is localized on the outboard midplane. The
localizations are very robust and almost regardless of var-
ious characteristics in equilibria [9]. For example, Fig.
4 (a) shows very little dependency of the localization on
the plasma density, which is represented by the normalized
beta, βn = 〈βt〉Ip/aBt0, where βt is the toroidal β, Ip is the
plasma current, a is the minor radius and Bt0 is the toroidal
magnetic field at the magnetic axis. This explains well that
the error-field control coils located on the outboard mid-
plane could effectively mitigate the effect of error fields
despite the limitation of poloidal harmonic controllability.
The mitigation of error fields, therefore, can be optimized
by developing the method to null the most important exter-
nal field by designing proper control coils.

The detailed information of the coupling between the
external field and the total resonant field can be used to
many different purposes. For instance, one can find the
external field only driving one magnetic island on a partic-
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Fig. 4 (a) The most important n = 1 external field and (b) the
n = 1 external field driving only ι = 1/2 as a function of
βn in NSTX. The external fields are represented relatively
to the plasma boundary as in Fig. 3.

ular rational surface, as shown in Fig. 4 (b). The external
field beyond the most important part is typically not local-
ized and may be too difficult to make relevant corrections
in reality. Nonetheless, the specific pattern in the external
field can be used to suppress islands in a particular region,
for instance, the edge region. This is another important
application of IPEC to the suppression of Edge Localized
Mode (ELM), by applying intentional perturbations [14] in
tokamaks.
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