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Profile stiffness is quantified using a simple technique. The approach is tested on a paradigmatic numerical
stiff transport model for one field (particles). The stiffness is found to exhibit radial structure and to depend on
collisionality, which might help explaining the observed lack of stiffness in stellarators, as compared to tokamaks.
The extension of the approach to heat transport requires some care. A proposal for a stiffness quantifier for heat
transport is made, and it is tested on data from the TJ-II stellarator.
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Profile stiffness (also known as profile consistency or
resilience) is the striking phenomenon that temperature or
pressure profiles tend to adopt the same shape, regardless
of the applied drive, at least in a certain parameter range.
The phenomenon is well-established for tokamaks, but elu-
sive in stellarators [1]. This is slightly enigmatic, since (a)
power degradation is a universal phenomenon in stellara-
tors, with a similar power dependence as in tokamaks [2]
and (b) it is believed that threshold-triggered instabilities
(leading to enhanced transport) should be operative both
in tokamaks and stellarators. This leads to the expectation
that profile stiffness should also be present in stellarators,
if to a less degree (and less obviously) than in tokamaks.

The detection of profile stiffness based on the direct
comparison of profiles does not allow a quantification of
the degree of stiffness, while the full 1-D modelling of
transport requires making assumptions not related to the
stiffness issue. Therefore, a stiffness quantifier is needed to
resolve this issue. In the present work we apply a standard
quantifier for profile stiffness to a paradigmatic stiff parti-
cle transport model. We then discuss the possible (non-
standard) extension of the method to heat transport and
present first results for the TJ-II stellarator.

Profile stiffness can be understood as the sub-linear re-
sponse of profile amplitudes to a (small) change in drive.
Pure diffusive transport models with fixed parameters pro-
duce a proportional response of profiles to changes in fu-
elling or heating, since the diffusion equation is linear in
the profile amplitude and the source strength. Thus, the
search for profile stiffness is closely related to the study of
the dependence of transport coefficients on (gradients of)
the transported quantity, since such a dependence would
break the linearity of the diffusion equation.

Such studies have been undertaken before [3], in the
framework of the analysis of perturbative transport. In the
cited reference, a distinction was made between the steady
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state (or ”power balance”) transport coefficient Dpb =

−Γ/∇n (here, Γ is the particle flux and∇n the density gradi-
ent), and the perturbation response value Dinc = −∂Γ/∂∇n,
dubbed the ”incremental” transport coefficient. If Dinc >

Dpb, the profiles will respond sub-linearly to changes in
the source term, thus producing stiffness. Accordingly, a
”stiffness factor” can been defined (by analogy to [4]):

C =
Dinc

Dpb =
∇n
Γ

∂Γ

∂∇n
, (1)

so that C > 1 would indicate some degree of stiffness.
The evaluation of Dinc requires a (small) perturbation

of the source term and profiles, either spontaneous or in-
duced externally. However, the relevant variables of sys-
tems near a critical steady state tend to fluctuate sponta-
neously around a mean value. This property can be ex-
ploited to obtain another, equivalent estimate of the stiff-
ness that does not require perturbing the system. Inter-
preting the mean amplitude of the fluctuations around the
steady state values (i.e. their standard deviation) as the
small change symbolised by ∂ symbol in Eq. (1) [5]:

Dfluct = RMS (Γ)/RMS (∇n) (2)

where RMS ( f ) =
〈
( f − 〈 f 〉)2

〉1/2
, and the angular brack-

ets refer to a time average. In steady state, and assuming
that the system response to perturbations is linear to first
approximation, we expect Dfluct ' Dinc.

In the following, we study the stiffness parameter C
using a simplified transport model, considered paradig-
matic for transport controlled by a critical gradient. The
model is described in considerable detail elsewhere [6].
The simplified model is Markovian in nature and the time
evolution of the single field n(x, t), which may be inter-
preted as a (particle) density, obeys, in one dimension, a
Generalized Master Equation:

∂n(x, t)
∂t

= S (x, t) +

1
τD

∫ 1

0
dx′p(x − x′; x′, t)n(x′, t) −

n(x, t)
τD

, (3)
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The domain of the system is 0 ≤ x ≤ 1, implying a nor-
malisation of the spatial scales of the system to the system
size. τD is a waiting time and specifies the mean time a
particle remains at a given location before taking a step.
We set τD = 1, implying a normalisation of the time scales
of the system to the mean waiting time. S (x, t) is an ex-
ternal particle source, and compensates edge losses due to
the absorbing boundary conditions imposed at x = 0, 1.
The function p is a ”particle step distribution”. When p is
Gaussian, p(x − x′, x′, t) = exp

[
−(x − x′)2/4σ2

]
/2σ
√
π,

standard diffusion is recovered in the limit of small step
sizes σ (and assuming a smooth density profile [7]):

∂n
∂t
=

∂2

∂x2

[
σ2

τD
n
]
+ S . (4)

Thus, the model is closely related to standard transport
models in common use.

The step distribution p is chosen as follows to produce
the required critical gradient mechanism:

p =
{

p0 : |∇n| < [∇n]crit (sub − critical)
p1 : |∇n| ≥ [∇n]crit (super − critical)

(5)

When the local gradient is below the critical value (sub-
critical), transport is governed by the p0 step distribution,
and when it is above (super-critical), it is governed by the
p1 step distribution. Here, p0 and p1 are fixed and sym-
metric stable probability distributions (of the Lévy type,
of which the Gaussian is a special case). Transport at any
given location x will therefore be sub- or super-critical as
a function of the local value of the density gradient. This
introduces a mechanism for self-regulation into the model.

In this work, p0 is always chosen to be a Gaussian
(with width σ0), while p1 can either be a Gaussian (with
width σ1) or a Cauchy distribution p1(x − x′, x′, t) =
σ1/π(σ2

1+ (x− x′)2). While a Gaussian distribution models
’normal’ diffusive transport, a Cauchy distribution (with a
’long tail’) is used to model processes with long-range cor-
relations, typically called ’avalanches’ or ’streamers’ in the
plasma transport context, and representative of turbulent or
’anomalous’ transport.

To compute Dinc, we will be comparing steady state
profiles at slightly different values of the amplitude of the
source S . For simplicity, the steady state flux Γ is com-
puted as Γ(x) =

∫ x
0.5 dx′S (x′). The lower limit of the in-

tegral corresponds to the system centre at x = 0.5. This
calculation is sufficiently accurate for the purpose of eval-
uating Dinc. However, for the calculation of Dfluct we will
use a different estimate of the flux that includes fluctuating
contributions (see below).

The numerical calculations are performed in the do-
main 0 ≤ x ≤ 1, on a grid with either N = 2000 (high
resolution) or N = 200 (low resolution) grid points, using
standard integration techniques for stiff differential equa-
tions to advance Eq. (3) in time. In all cases, the source
S (x, t) = S 0 is taken constant. We first performed a scan
of the source rate at high resolution (13 cases), and after
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Fig. 1 Profiles vs. S 0: Gauss-Gauss (top) and Gauss-Cauchy
(bottom).

checking that the results at lower resolution were equiv-
alent, we performed a bi-dimensional parameter scan of
both the source rate and the sub-critical diffusion coeffi-
cient, the latter being proportional to σ2

0 (130 cases).
Source scan: More details on the high-resolution cal-

culations discussed here can be found in Ref. [8]. We set
σ0 = 0.002, while p1 is Gaussian with σ1 = 0.008 for the
cases labelled Gauss-Gauss or ”GG” (both transport chan-
nels are Gaussian), or p1 is Cauchy withσ1 = 0.004 for the
cases labelled Gauss-Cauchy or ”GC”. The critical gradi-
ent is chosen [∇n]crit = 2000.

For both series (GG and GC), a scan of
the source rate was performed, choosing S 0 ∈

{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 10}. The parameter Dinc

was computed by comparing the profiles corresponding to
two subsequent values of S 0.

Steady state profiles are shown in Fig. 1. The GG and
GC profiles are very similar, except for the highest fuelling
rate (S 0 = 0.5): whereas the GC profile remains critical
across the system, the GG profile ”bulges”, i.e. becomes
super-critical. This difference can be ascribed to the larger
transport capacity of the super-critical transport channel in
the GC case.

In order to quantify the stiffness, we computed the
stiffness factor C. Fig. 2 shows the radial profiles of the
stiffness factor C for the GC case. The spikes in the figure
occur when the local values of the gradient ∇n(x) corre-
sponding to the two subsequent values of S 0 being anal-
ysed are equal. Such points should be ignored, since their
statistical error is large, and thus we will base the analysis
on the global traces while ignoring the spikes. The figure
shows that the critical region (where C � 1) grows from
the edge inward as the source is increased. Next, a super-
critical region (with C ' 1) starts to grow from the edge in-
ward. The super-critical state covers almost the whole sys-
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Fig. 2 Case Gauss-Cauchy: profiles of C for different combina-
tions of the fuelling S 0.
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Fig. 3 Source scan, 〈C〉 vs. S 0.

tem in the GG case at highest fuelling (not shown), while
it only affects a narrow boundary layer for the highest fu-
elling GC case.

Fig. 3 shows 〈C〉, the radial average of C. The points
in the figure are labelled by the lower of the two S 0 values
used. In comparison to the GG cases, the GC cases do
not only yield (slightly) larger values of C, but the range
of values of S 0 where C � 1 exceeds the corresponding
range for the GG cases.

Bi-dimensional parameter scan (source rate and
diffusivity). Here we scan the source amplitude S 0 and
σ0. The latter can be interpreted as a scan of the sub-
critical diffusivity (or ”collisionality”). As in Ref. [6], we
set τD = 1, S (x) = S 0, and [∂n/∂x]crit = 50. To compute
C, the same runs were repeated with S (x) = 1.1 · S 0.

Fig. 4 shows 〈C〉 for the GG cases with σ1 = 0.08,
and for GC with σ1 = 0.04. For GG, the largest possible
value of σ0 is σ1. For GC, no such limit exists on σ0. It is
observed that 〈C〉 is a sensitive diagnostic for criticality.

In all series studied, 〈C〉 is seen to increase gradually
with increasing σ0, reach a maximum value and then drop
somewhat abruptly and make a sharp transition to its sub-
critical expectation value (C = 1) at a precise value of σ0.
For the GC cases, the point where the system transits from
a fully sub-critical state to a critical state has been com-
puted in previous work [6]. This critical power threshold
is given by: S c = 2σ2

0/τD [∇n]crit, or σ0 =
√

S c/10 with
our choice of parameters. This matches the results exactly.

Stiffness from fluctuations. In the case of our numer-
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ical model, it is straight-forward to compute the fluctuat-
ing gradient, while the flux can be evaluated from particle
conservation (∂n/∂t = −∂Γ/∂x + S ) in combination with
Eq. (3). Thus:

Γ(x, t) =
∫ 1

0
dx′K(x − x′, x′, t)

n(x′, t)
τD(x′)

, (6)

where K(x − x′, x′, t) = Θ(x − x′) − P(x − x′, x′, t), Θ(x) is
the Heaviside function and P(∆, x′, t) =

∫ ∆
−∞

dxp(x, x′, t) is
the cumulative step probability distribution.

Fig. 5 shows the calculation of
〈
Cfluct

〉
. Compare these

results to Fig. 4. Although the maximum numerical value
of
〈
Cfluct

〉
is somewhat lower than that of 〈C〉, the global

trend is the same. The deviation between C and Cfluct at
points with large stiffness is to be expected, as the system
response will be strongly non-linear at such points. The
calculation of Cfluct is not possible when the system is lo-
cally static, which explains why these figures have less data
points than Fig. 4.
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Heat transport. The preceding analysis was simpli-
fied by the fact that the thermodynamic force and the crit-
ical parameter were both equal to ∇n. For heat transport,
these two quantities do not coincide and the definition of
a stiffness quantifier is less obvious. The traditional pro-
posal, C = χinc/χpb = −∂q/∂(n∇T )/χ [4], where χ is the
heat diffusivity, will respond only weakly when the system
criticality is not determined by n∇T ' const. In general, a
stiffness quantifier C that responds sharply to a given crit-
ical condition should be proportional to the inverse of the
change in that critical condition, as might indeed be de-
duced from the modelling efforts in, e.g., [9]. Since we ex-
pect Electron Temperature Gradient modes to play a role in
the stiffness (if any) of the temperature profile, we believe
that the critical parameter must be ∇T/T [10], so that we
define the stiffness of the temperature profile by

CLTe =
1
χ

∂(χ∇ ln T )
∂(∇ ln T )

. (7)

This unorthodox proposal is designed to detect the depen-
dence of the heat diffusivity, χ, on the expected critical
parameter for the ETG instability, ∇T/T . Note that many
alternative definitions are possible.

Application to the TJ-II Stellarator. Here we report
on the first attempt to estimate the stiffness of the temper-
ature profile in the stellarator TJ-II. Profiles at TJ-II are
obtained using the single-pulse high-resolution Thomson
Scattering diagnostic [11], yielding around 200 data points
for the electron temperature T and density n along a chord
spanning most of the plasma cross section, with a spatial
resolution of 2.25 mm.

The goal of the present analysis is to determine the
global transport response to a change in heating. There-
fore, we fit the profiles to simple functional forms, thus
ignoring any detailed radial structure. This improves the
robustness of the calculation of radial derivatives needed to
compute CLTe. The temperature profile is fit to the sum of
two Gaussians, while the density profile is fit to a Gaussian
multiplied by a second-order polynomial in ρ2 (for sym-
metry). ρ =

√
ψ is a radial coordinate, where ψ is the

normalised poloidal magnetic flux, obtained from the the-
oretical calculation of the magnetic flux surfaces in vac-
uum. Finite pressure effects can safely be ignored. The
discharges studied here are those reported in Ref. [12].

The error in the profile reconstruction, evaluated us-
ing the Jacobian of the fit matrix, is of the order of 10%,
lower in the centre but increasing towards the edge. While
the temperature profile reconstruction is reliable (i.e. with
an error less than 10%) out to about ρ = 0.7, the density
profile reconstruction is reliable only out to about ρ = 0.4.
The calculation of CLTe is not very sensitive to the details
of the density profile.

To compute χ and CLTe, an estimate of the heat flux q
is required. The heating source is assumed to have a Gaus-
sian deposition profile, centred at ρ = 0, with a fixed width
of ∆ρ = 0.2. The heating efficiency is estimated to be
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Fig. 6 Stiffness estimate for TJ-II.

60%. Radiation and other losses are ignored. The heat flux
is obtained by integrating the net deposited power. In any
case, the stiffness factor CLTe is not very sensitive to the
details of this calculation. Fig. 6 shows the mean stiffness
factor, averaged over 9 equivalent discharge combinations
with similar densities and different heating levels. Ignor-
ing the spikes, one observes that a certain profile stiffness
exists (

〈
CLTe
〉
> 1) in the radial range 0.15 ≤ ρ ≤ 0.55,

roughly coincident with the T gradient region.
Discussion. The quantification of profile stiffness is

directly related to the detection of the dependence of the
transport coefficient on the profile gradient. In accordance
with this idea and with literature, we make use of a stiffness
quantifier C, and show that it provides a useful quantifica-
tion of stiffness in a paradigmatic transport model. It ap-
pears that stiffness has a radial structure and a dependence
on system parameters (such as the source or drive, and the
collisionality), which could possibly shed some light on
the observed differences between tokamaks and stellara-
tors.

The extension of these results to heat transport re-
quires some care. We have suggested a definition and ap-
plied it to TJ-II data.
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