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A flute mode turbulence and a related transport in the divertor of a
mirror
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We investigate a flute mode turbulence and its related radial transport in a magnetic divertor. The computer
code was made to simulate flute modes. This code can be applied to a magnetic shearless confinement system
as well as a tandem mirror. Computer simulation carried out in a modeled magnetic divertor shows that the flute
modes enhance the radial transport during its growing phase.
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1. Introduction
A magnetic divertor is an application of the stable

dipole magnetic configuration on a planet. And the mag-
netic divertor configuration has an equilibrium up to β � 1,
where β is the ratio of plasma pressure to the vacuum mag-
netic field on axis. The open magnetic confinement system
such as GAMMA10 has the possibility of a fully axisym-
metric system with MHD stable state by containing a mag-
netic divertor region.1)

A typical divertor magnetic field is shown in Fig.1,
where the axial length L = 200 and a magnetic null point
locates at (r, z) = (65, 0). This axisymmetric mirror plasma
is found to be stabilized by the plasma compressibility
rather than by the ion finite Larmor radius effects around
the magnetic null for the fatter radial density profiles.2)

That is, ∂pUγ/∂ψ > 0 is the stability condition of plasma
in Fig.1, where p is plasma pressure, U ≡ ∫

d�
B is the spe-

cific volume of a magnetic field line, γ is the heat index
and 2πψ is the magnetic flux surrounded by the surface
ψ = const.

The flute modes are one of the most dangerous insta-
bilities in the magnetic shearless confinement system, so
the stability analysis of the flute modes usually has a pri-
ority over other modes.3) However the transport process
resulting from the flute instabilities has not been studied so
much to the authors’ knowledge. So the purpose of this pa-
per is to investigate the flute instability and related plasma
radial transport in a magnetic divertor shown in Fig.1.

As mentioned above in this paper, the flute modes are
stabilized by mainly plasma compressibility in a divertor
mirror cell. So that the fluid approximation can be ap-
plied to the flute mode analysis here. In the marginally
stable state the plasma pressure radial profile is assumed
to satisfy the relation of pUγ = const. Ions passing near
the magnetic null region do not conserve its magnetic mo-
ment µ, which can disturb the marginally stable state, i.e.
∂pUγ/∂ψ <∼ 0, where the flute modes become unstable. In
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the following we consider the slightly unstable state to the
flute modes.

-100 -50 0 50 100
0.0

3.0

6.0

9.0

12.0

z

B

-100 -50 0 50 100
0

20

40

60

80

z

r

magnetic field linesmagnetic field (a) (b)

Fig. 1 Modeled magnetic divertor. (a) is axial profile of mag-
netic field and (b) plots magnetic field lines.

2. Basic equation
The freedom of compressible Alfvén modes and shear

Alfvén modes and acoustic modes is unnecessary to calcu-
late the flute instability, because those modes are more sta-
ble than the flute modes and that those modes usually have
high frequency oscillations. One of authors (Pastukhov)4)

has proposed a method how to remove the Alfvén modes
and acoustic modes from the MHD equations, the equation
of motion of which is given as
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Here a2 = 〈r4〉/〈r2〉 and ŵ has the following form.
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where Φ ≡ cφ, c light speed, φ electrostatic potential, w is
related to the specific volume averaged vorticity ∇×(ρcB×
∇φ/B2) due to plasma E×B drift flux, and v2

α is the square
of plasma fluid velocity. Poisson bracket is defined as
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The second term in the right hand side in eq.(1) represents
the viscosity of fluid and the third term contains the effects
that the vorticity can move along a magnetic null.

The transport equations of mass density and heat are
given in the following on the assumption of the adiabatic
index γ = 5/3.
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Here ρ ≡ Mini + Mene = 〈ρ〉 ≡ ρ̂/U is mass density.
The slow time variable equilibrium component ρ̂0(ε3t, ψ)
and fast variable fluctuating components ρ̃(εt, ψ, ϕ) are de-
fined, where the equilibrium quantity is represented by the
hat with subscript ˆ0 and fluctuating quantity is by the tilde
˜, i.e. and ρ̂ = ρ̂0 + ρ̃. The quantity T̂ is related to the
temperature defined by T̂ ≡ pUγ/ρ̂ = (Ti + Te)Uγ−1/Mi.
The symbol A means the average of A over ϕ, Â means the
quantity of A integrated in the specific volume of a mag-
netic field line, and the symbol 〈A〉 means the integration
of A along a magnetic field lines,

A ≡ 1
2π

∫ 2π

0
Adϕ , Â ≡

∫
A dζ

J(ψ, ϕ, ζ)
, 〈A〉 ≡ Â

U
(8)

where J(ψ, ϕ, ζ) ≡ ∇ψ×∇ϕ · ∇ζ is Jacobian. The magnetic
field line curvatures are included in the coefficients U, 〈r2〉,
〈 1

r2 B2 〉 in the eqs.(1)-(7), and the definition of U is

U ≡
∫

dζ
J(ψ, ϕ, ζ)

(9)

The coordinates (ψ, ϕ, ζ) adopted here are the flux coordi-
nates, where magnetic field is represented as B = ∇ψ×∇ϕ.
Here 2πψ gives the magnetic flux inside the surface of
ψ = const, and ϕ corresponds to an angle coordinate. The
remaining coordinate ζ is usually taken as z-axis or along
magnetic field line.

The classical diffusions included in eqs.(1)-(7) are de-
fined by
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Here τi is the classical ion-ion coulomb collision time5),
cs ≡

√
γp/ρ is the ion sound speed , and b is a distance

defined by b ≡ √
ψb/BM, where the subscript M means

some axial position on axis. The quantities related to clas-
sical transport XM and dM in eq.(10) are the dimensionless
quantities which are constant along a magnetic field line.
The mass density ρ and other plasma quantities Te, Ti are
assumed to be constant along a magnetic field line through
this paper. The parameter ε defined in eq.(11) is a small
expansion parameter, where we assume ε2 = 10−2 in the
numerical calculation of next section in this paper.

The basic equations in this section contain the inter-
change modes (similar to the Rayleigh-Taylor instabilities)
and the modes associated with the presence of nonuniform
plasma flows (similar to the Kelvin-Helmholtz instabili-
ties) as well as the electrostatically incompressible stable
plasma flows. So this close set of equations describe the
nonlinear low-frequency MHD plasma convection and re-
sulting transport processes in weakly dissipative plasmas
in axisymmetric shearless systems.

3. Numerical results
Numerical calculation by using the basic equations

(1)-(7) is carried out in the magnetic divertor shown in
Fig.1 for the purpose of investigating the effects of flute
mode fluctuations on the plasma radial transport.
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Fig. 2 Basic parameters of magnetic divertor.

The geometrical parameters of the magnetic divertor in
Fig.1 are plotted in Fig.2, where the specific volume u ≡
U/UM in (a), 〈r2〉/b2 in (b), 〈r4〉/b4 in (c), 〈 1

r2 B2 〉B2
Mb2

in (d), and 〈λ2B2〉B2
Mb2 as a function of x ≡ √

ψ/ψb.
The classical diffusion coefficients of quasi-equilibrium
(m = 0) density and temperature are proportional to 〈r2〉
in eqs.(4) and (6), which have maximum values at x = 1
in Fig.2(b). The classical diffusion coefficients of the per-
turbed components (m � 0) of vorticity and temperature in
the ϕ direction are proportional to 〈r4〉〈 1

r2B2 + λ
2B2〉/〈r2〉2

and 〈 1
r2B2 〉 in eqs.(1) and (7), which diverge at the axis in

Fig.2(d). The effects that fluid can flow freely in the az-
imuthal direction along a magnetic null line are included
through 〈λ2B2〉 in eqs.(1) and (2). The potentialΦ is deter-
mined by eq.(2). A dimensionless parameter ε in eq.(11)
contains the magnitude of the classical diffusion.

The equations (1)-(7) have the steady state solutions if
the classical diffusion is neglected, i.e. ε = 0, that is

ρ̂0(ψ) = const. , T̂0(ψ) = const. , ŵ0(ψ) = const. (12)
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The field line integrated vorticity w0 = −1 gives a plasma
azimuthal rigid rotation so that there is no shear flow in this
initial condition. As long as eq.(12) is satisfied any fluctu-
ations do not generate in eqs.(1)-(7). So we add a small
fluctuation T̃ to the initial condition eq.(12), i.e. ρ̂0 = 1,
T̂0 = 1, ŵ0 = −1, in the following numerical calculation,
where the initial perturbation T̃ added to equilibrium tem-
perature T̂0 is plotted in Fig.3(b).

(a) (b)

φ
high high

T
∼

Fig. 3 Initial condition of φ and T̃ .

Henceforth, the normalized time τ defined as τ = εcsM
b t is

introduced. The specific volume averaged perturbed quan-
tity Ã is plotted in place of Ã in the following figures. The
initial condition ŵ0 = −1 gives the axisymmetric potential
profile shown in Fig.3(a), where the plasma rotates clock-
wise rigidly around axis at the amount of 2π during τ � 4.
This initial condition is unstable to the flute modes.

time = 12.0 

(a)

(b)

(c)

(d)
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w∼ ρ∼

T
∼

Fig. 4 The potential and the perturbed quantities at τ = 12.

The flute modes grow in a linear phase with the rota-
tion of plasma around axis by E×B-drift, and then the first
big flute instability appears at τ = 12 in Fig.4. A typical
parasol shaped equi-contour surfaces to Rayleigh-Taylor
instabilities of T̃ ≡ T̃/U2/3 can be seen in Fig.4(d)

The radial profiles and radial fluxes Γρ of mass den-
sity and ΓT of temperature are plotted at τ = 12 in Fig.5.
Initial flux volume integrated mass density ρ̂0 = ρ0U and
temperature T̂0 = T0U2/3 profiles are close to the initial
profiles except for the region x � 1 where the classical
radial flux dominates in Figs.5(e) and (f). In the region
where flute instability occurs, the anomalous radial fluxes
are much larger than the classical ones in Figs.5(e) and (f).
The plasma rotates clockwise in whole region as seen in
Figs.5(b) where the potential has a monotonously decreas-
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Fig. 5 Radial profiles of φ0, ρ̂0, T̂0, ŵ0 and radial fluxes of mass
density Γρ and temperature ΓT at τ = 12.

ing radial profile. In the region x <∼ 0.25, where the flute
modes do not reach yet, classical transport dominates and
plasma rotates rigidly in the azimuthal direction. The para-
sol shaped low temperature region generated by the flute
instability in Fig.4 continues in τ�10 and then disappears.

time = 44.0 
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Fig. 6 The potential and the perturbed quantities at t = 44.

The flute instabilities appear and disappear repeatedly
in time with enhancing radial transport during the exis-
tence of the instabilities. Figure 6 plots the profiles of per-
turbation quantities at τ = 44. The potential has a peak off
axis at that time in Fig.6(b). The low temperature region
penetrates at axis in Fig.6(d) which is accompanied by the
penetration of the low density region in Fig.6(c). Many
short wave length perturbations are seen in mass density ρ̃
than that in temperature T̃ because the modes associated
with the presence of nonuniform plasma flows (similar to
the Kelvin-Helmholtz instabilities) grows in mass density
where the classical diffusion coefficient of mass density
in eq.(5) is much smaller than that of the temperature in
eq.(7).

The radial profile of potential φ0 has a maximum at
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Fig. 7 Radial profiles of φ0, ρ̂0, T̂0, ŵ0 and radial fluxes of mass
density Γρ and temperature ΓT at τ = 44.

x�0.45 at τ=44 in Fig.7(a). That is, two counter flows ex-
ist at this time. Fig.7(d) plots the radial profile of w0, max-
imum and minimum values of which are 2.57 and −2.87,
respectively. These magnitudes are larger than the initial
magnitude of w0. Because the total vorticity is conserved
in this simulation, there is inward transport of angular mo-
mentum. In the region 0.1 < x < 0.8 the enhanced radial
transport exists and the plasma shakes forward and back-
ward radially as shown in Figs.7(e) and (f).

time = 198.0 

(a)

(b)

(c)

(d)

φ

high

high

high

high

w∼ ρ∼

T
∼

Fig. 8 The potential and the perturbed quantities at t = 198.

The system comes to a quasi-steady state after the
long run as shown in Fig.8, in the meaning that the struc-
tures do not change so much in time. In this state any per-
turbations are not observed in the region x <∼ 0.6 in Fig.8.
Although the potential in Fig.8(b) has almost axisymmetric
profile, its radial profile is not constant shown in Fig.9(a).
The radial profile w0 is also not constant radially, which
means that there are shear flows (not rigid rotation).

In the region x >∼ 0.6 in Fig.8 the vortex structures of
w̃, ρ̃, T̃ are seen, where the anomalous radial transports are
enhanced in ρ0 and T0 in Fig.9(e) and (f). The equilibrium
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Fig. 9 Radial profiles of φ0, ρ̂0, T̂0, ŵ0 and radial fluxes of mass
density Γρ and temperature ΓT at τ = 198.

quantities of ρ̂0 and T̂0 shown in Fig.9(b) and (c) has a flat-
ter slope in the region x <∼ 0.5 than those in x >∼ 0.5, which
reminds us of the transport barrier observed in toroidal
confinement systems. However, these radial profiles de-
creases radially so that the system is unstable to the flute
modes when without counter shear flows. That is, Figs.8
and 9 show that the counter shear flows prevent the flute
modes from being unstable.

5. Summary
We made a computer code using the basic equations

obtained in Ref.4. These equations exclude the shear
Alfvén modes and compressional modes from MHD equa-
tions in order to follow the flute modes and the instability
driven by nonuniform plasma flows (similar to the Kelvin-
Helmholtz instabilities). We carried out the computer sim-
ulation in a modeled divertor mirror cell in the initial con-
dition with finite rigid rotation but no shear flows.

Initial small temperature dip around the outer bound-
ary causes the flute instabilities. The flute instabilities
are accompanied by the large enhanced radial transport of
mass density and temperature. At the end of the com-
puter simulation, the counter shear flow appears which
suppresses the anomalous radial transport as something
like transport barrier formation. The equilibrium mass
density and temperature have profiles decreasing radially,
which should be unstable to flute modes, continue to be
stable under the existence of counter shear flows.
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