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Algebraic analysis approach for multibody problems
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Here we propose an algebraic analysis approach for multibody Coulomb interaction. The momentum trans-
fer cross section using the algebraic approximation is close to the exact one. The CPU time for the algebraic
approximation is only around 20 minutes on a PC, while the exact analysis needs 15 hours to integrate the whole
set of multibody equations of motion, in which all the field particles are at rest.
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Since it is difficult to rigorously deal with multibody
Coulomb collisions, the current classical theory considers
them as a series of temporally-isolated binary Coulomb
collisions. Let us first breafly review a binary collision be-
tween ions. In the center of mass coordinate(r, θ) in the
collision plane, the test particle with a reduced mass ofµ

moves along a hyperbola as

r (θ) =
bsinθ0

cosθ − cosθ0

[
cosθ
sinθ

]
(1)

with a velocity of

g (θ) =
g0

sinθ0

[
cosθ0 sinθ

1− cosθ0 cosθ

]
, (2)

with which the velocity change is given by∆g =

2g0 cosθ0ex. As shown in Fig. 1 its scattering angle,
χ ≡ π − 2θ0, is given byb = b0 tanθ0, whereb is the im-
pact parameter,b0 ≡ e2/4πε0µg2

0 corresponds toχ = π/2
scattering, andg0 the initial relative speed atr = ∞ and
θ = −θ0.
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Fig. 1 Unperturbed trajectoryr = r (θ) in an orbital plane. The
scattering center is at the origin. An impact parameter is
b = b0 tanθ0. Interaction region is inside the circle with a
radiusr` = ∆`/2.
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The angular component of the equation motion gives
the well-known invariance of

r2 dθ
dt
= const= bg0, (3)

and the radial component is given by

dgr

dt
=
g2

0b0

r2

(
1+

b0

r
tan2 θ0

)
, (4)

wheregr ≡ ṙ denotes the radial velocity. The first term on
the right hand side of Eq. (4) stands for the Coulomb force,
and is much smaller for small angle scatterings, i.e.χ � 1,
than the second term which results from the conservation
of angular momentum Eq.(3), since, at the closest point
r = rmin, we have

b0 tan2 θ0
rmin

' 2
χ
� 1.
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Fig. 2 Algebraic trajectory (broken line) and exact trajectory
(curved line). A Field particle is on the left.

Thus the main force on the particle is not a Coulomb
force, but the one due to the conservation of angular mo-
mentum. As a consequence, the exact hyperbolic trajetory
Eq. (1) for the particle can be approximated as a broken
line with an impulse force of

µ∆g = 2µg0 cosθ0ex
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at the closest pointr = rmin. With this in mind, we have
approximated a multibody problem to a series of binary de-
flections at their closest point as shown in Fig. 2, in which
a test particle starts at the lower-right point, and its final
point is at the upper-right point due to the interaction with
a field particle.

In the following we assume that all the filed particles
are at rest and their spatial distribution is almost uniform
with a spacing of the average inter particle separation,∆` ≡
n−1/3, wheren stands for the number density as shown in
Fig. 3.
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Fig. 3 A gray circle (or red in color) is a test particle atr, and
almost-uniformly-distributed black circles are field parti-
cles atr i j = (i∆` + δx) ex + ( j∆` + δy) ey,−N ≤ i, j ≤ N.

First we seek for a field particle that gives the test par-
ticle an impulse force at the earliest time. The test particle
moves along a strait line with a velocity of (0, g) in the
(ξ, η) coordinate system, in whichη-axis is in the direc-
tion of the velocity vectorg of the test particle. It is the
field particle withη = ηmin, the minimum|η|, that we need.
When the test particle moves to the position of(0, ηmin),
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Fig. 4 Coordinates transform.

it changes the velocityg by ∆g as shown in Fig. 4. This
procedure will be repeated until the test particle leaves the

prescribed interaction region, i.e.r < ∆`/2 as depicted in
Fig. 1.

Theexactcalculation hereafter refers to that obtained
by solving the following equation of motion for the test
particle:

dr
dt
= g (5)

µ
dg
dt

=
e2

4πε0

N∑
i=−N

N∑
j=−N

r − r i j∣∣∣r − r i j

∣∣∣3 , (6)

where the field particles positionsr i j

r i j = (i∆` + δx) ex + ( j∆` + δy) ey (−N ≤ i, j ≤ N)

using the 5-th order Runge-Kutta-Fehlberg method known
as the RKF56.
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Fig. 5 Comparison of algebraic trajectory and exact trajectory
in the case of binary Coulomb collision (N = 0) with an
impact parameterb = 0.2∆`.

Figure 5 compares trajectories of the algebraic ap-
proximation and the exact hyperbola in the case of the pure
binary Coulomb interaction, i.e.N = 0 in Eq. (6), with an
impact parameterb = 0.2∆`. The only one field parti-
cle is at the origin in this case;r00 = 0. The test parti-
cle starts at the lower right point goes through the closest
point and ends at the upper right point in the figure. In
the case of multiple field particles, we have assumed that
there are nearly uniformly distributed 21× 21 field parti-
cles at rest. In the algebraic approximation to multiboby
problems(N > 1), as explained earlier, after a coordinate
tranformation(x, y)→ (ξ, η), where

ηi j =

(
r i j − r

)
· g

g
, (7)

we find the field particle with minmum
∣∣∣ηi j

∣∣∣.
Figures 6, 7, and 8 are three examples out of 105

Monte Carlo calculations for an impact parameterb =
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Fig. 6 Comparison of algebraic trajectory and exact trajectory in
the case of multibody Coulomb collisions with an impact
parameterb = 0.2∆`. This is an example of small angle
scatterings.

0.2∆`, and compare trajectories of the algebraic and the
exact trajectories in the case of the multiple Coulomb in-
teraction, i.e.N = 10 [1] in Eq. (6). The indivisual ap-
proximation is good in most cases as shown in Figs. 6 and
7, while 8 is one of few example which the approximation
is bad. The algebraic trajectory in Fig. 7 seems to deviate
from the exact one, however, the deviation is as small as
∆` × 10−6 ∼ 10−13 meter in typical fusion plasmas.
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Fig. 7 Comparison of algebraic trajectory and exact trajectory in
the case of multibody Coulomb collisions with an impact
parameterb = 0.2∆`. This is an example of large angle
scatterings.

Finally we conducted the above calcution for different
impact parameters 0< b < r`. Figure 9 shows the ac-
cumulated variance of velocity change,

〈
(∆g)2

〉
, which is

in proportion to the conventional momentum transfer cross
section,σm, as

σm = 4πb2
0 ln

bmax

b0
(8)

The error inσm due to the algebraic calculation is seen
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Fig. 8 Comparison of algebraic trajectory and exact trajectory in
the case of multibody Coulomb collisions with an impact
parameterb = 0.2∆`. The discrepancy is as small as
10−13 meter in typical fusion plasmas.

to be quite small for both the binary (N = 0) and multibody
(N = 10) cases, where there is only one field particle and
there are 21× 21 field particles, respectively. It should be
noted that in the binary interactions the cross sectionσm

is converged atb � ∆` which is far less than the Debye
lengthλD. The CPU time for the algebraic approximation
is only around 20 minutes on a PC, while the exact analy-
sis needs 15 hours to integrate the whole set of multibody
equations of motion.
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Fig. 9 Accumulated scattering cross sectionσm = σm

(
b̄
)

vs

normalized impact parameterb̄ = b/∆`.

In the future, we apply this method to three dimen-
sional multibody collision.
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