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Study of poloidal electric field generation
by ECH in a helical plasma

I.Higashi, S.Murakami
Department of Engineering, Kyoto University, Kyoto 6060-8501, Japan

Poloidal electric field generated by ECH is investigated in a helical plasma. A linearized Fokker-Planck
equation is solved by the adjoint method assuming a helically symmetic configuration for simplicity. It is found
that the generated electric potential in the helical plasma is about 20% larger than that in the tokamak plasma.
This indicates that about two times greater poloidal electic field is generateeiteelical plasma.
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1 Introduction

Electron cyclotron heating (ECH) accelerates elec-

trons perpendicularly and generates trapped particles,
which tend to localize at the resonance region. Those
resonant trapped particles would enhance a inhomo-
geneous electrostatic potential on a flux surface and

generate a poloidal electric field resulting in the large u =

radial transport due to the radial drift liyx Bdrift.

M.Taguchi(1992)[1] evaluated the poloidal elec-
tric field generated by ECH in a tokamak plasma by
solving an adjoint equation to the linearized Fokker-
Planck equation with a quasi-linearfidision term.
Because of the deeper magnetic ripple by the helical
coils the larger poloidal electric field would be gener-
ated in helical plasma than that in tokamaks.

In this paper, the poloidal electric field gener-
ated by ECH is investigated in a helical plasma in the
collisionless regime. Applying the same method by
Taguchi, the poloidal electric field is calculated as-
suming helically symmetric configuration and com-
pared with one in a tokamak plasma.

2 Basic equation

We consider a toroidal plasma, where the magnetic
field is expressed in the Booer coordinatgso( ),
wherey, 6, ¢ are the toroidal flux, the poloidal an-
gle and the torodial angle, respectively. When the RF

power is assumed to be weak, the gyrophase-averaged

distribution function for the electrons is slightly dis-
torted from the Maxwell distribution functiofiy =
Neo(Me/ 27 Te)>/? exp(-meV?/2T,), whereme and Te

are the electron rest mass and electron temperature. Here,(A)

The distorted parfe; is determined by the lineraized
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drift kinetic equation:

of
Vb Ve — Ce(fer) = ey E - ba—ve\‘;
dfeo

+Qr(feo) - wra (1)

where the energyVv = %m\ﬁ, the magnetic moment
v2/2B and o = v/lvj| as independent vari-
ables in velocity spaceb = B/B,vy = v: Db, v, =
(V—Vvi)"/2,Ceis the linearized Fokker-Plack collision
operator, and;s andE = —V¢ are the velocity-space
diffusion and the poloidal electric field due to ECH,
respectively. To calculate the electrostatic potential
we introduce the adjoint equation

veefeoei(memz)

Vo

wherevee = (4nnep€® IN A)/mBVE, ve = (2Te/me)Y/?,

In A is the Coulomb logarithng is the poloidal angle
and ¥ +/g is Jacobian. We multiply (2) bye1/ feo,
integrating over velocity space and averaging over the
flux surface. Then, the electrostatic potengiaian be
expressed as

vib - Vo + Ce(fnn) = - 2)

Neoe <ié‘(me+nz)¢> _

Te \ 40O
1 fon dfeo
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where
Neg = f fadv 4)

is the flux surface average of a quantity A:
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And we have used the relation

<ffv”b-ngv> - —<fgv|b-Vfdv>

and the adjoint property of the collision operator,
fel d _ me,n
f_Ce( fm,n)dV - f_Ce( fel)dv
€0 €0

A similar relation can also be derived for ions. It be-
comes

noeZ [ 1 ; N1
Nio®4 _eu(m+n.:)>=_<_el(nﬂ+no> 5
(% Ve ©

Z; is the charge number of ion arid is the ion tem-
perature.

We expand the electrostatic potential in a Fourier
series:

¢ = Z ¢m,ne’i(mg+n5)

(6)
mn=—co
The left hand side of (3) becomes
Nnge/ 1
LHS = —

= ()
Neg€ 2r

= 7

Using charge neutrality, the second term in the right
hand side of (3) becomes

nier< 1 .

= _Z _ep(rrw+n_() >
T, \5 ¢
_neoez 2r

Ti ¢ gdods

Transposing the second term in the right hand side
and arranging the equation give us

e¢m,n —
Te

$mn  (8)

vt Fmn
Vee 1 + Z| Te/T|

©)

(2 Qi) - %]V} 6 gapa

(f FQnav) 2
(10)

an =

where

1
NeoTe <f WQr dv>

11)

Vit =

3 Solution of the adjoint equation

In the collisionless regime we exparigl, as fnn =
fO + ) + ... Then the distribution functionf®),
and f{{) satisfy the equations

vib- V% =0 (12)
~ ~ fo -
vib- i+ Co(f9) = ~ =L (13)

V3

This functionf%) is determined by the solubility con-
dition for (13). The linearized Fokker-Planck colli-
sion operatiorCe is approximated well fow > (2 —
3)vs by

YeeW 0 (91
@ B au "o

fveeﬁ(f)
~los oo

wherex = v/Ve. For simplicity we use this approx-
imate collision term here. Then the solubility condi-
tion can be written as

Ce(f) =~ (1 + 2Z)

(14)

ot
b 9a

(B ) fwo(fwm
(1-2aB)Y2 [, x2 ox | feo

B 1 ;
- _ —_el(m9+n()> feO
<(1—/IB)1/2 \9 b

A = 2u/V?. Here the bounce averaga), is defined

by
(A = {

whereA. = 1/Bmaxdmax = 1/Bmin. In order to solve
(15), we consider the following eigenvalue equation:

201+ Z)%a% [/1 (@-aB)"?)
(15)

A (0< A< )
f f VgdodZA/ 95 VOBAZ  (Ae < A < Amay)

9 A{@-aB)'?)

b da

al

> kG =0 (16)
b

. 1 B
2\(1-aB)¥2
O< A< A, A <A< Amay)

subject to the boundary conditions

dG(1c —0)  dG(L; + 0)
a1 da

dG(Amay)
da

G(0)=1, is finite
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The eigenfunction&, with eigenvalues, satisfy the This resonance condition becomes a semicircle in ve-
orthogonality condition locity space
Amax B 2 2
f <—> GaGmdd =0 (kn # k) Mo L) (ve) D 1-4wS 22)
0 1-2aB)z/y Ve 2S Ve (2S)?
Using this, we can express the solution of (16) inthe  \hereuy = (w - lwe) /K Ve is the normalized parallel
form velocity of the resonant electrons aid= lwve/kc?

(0) relates the strength of the relativistic correction.
fn = A)Shf 17
Z(1+z.)Kn Gu()Snfw  (17)

4.1 Helical symmetric configuration
whereko(= 0) < k1 < kp < ---and ) ) . .
We assume a helical symmetric plasma with magnetic

foﬂmaxe < B \fel(rm+n£> da configurationB = B, (1 — e, cos®) (¢ = M(6 + %g)).
S, = (1-18)2 b Using x = ABy(1 — &) we rewrite (16) and boundary
[ime G§< B__ > da condition .
0 (1-1B)z [,
. . d? da d 1
Note that the eigenfunctioBy = 1, so thatSy = O. XQ’FG + Xd_ +a d—G + EﬁKG =0 (23)
Substituting the solution (17) into (9), we obtain X X X
§ yGdod; 1
Fmn = % 1 1- e cosy \M?
2n w _ 1- h ,
<f Te Qrde> @ L (1= e cos?) ( -« X) do
S N i <TcWo) fdv> (18) (24)
Z 1+ Z.)Kn +3 <f T . fe,z 1 (1 1 e cosf X)_l/z w
since Jo L-e) 1-e
(25)
f)@GnafeO dv 4, -1/2
ot da 1™ 1 1- e,cost ,
—__ =z - X do
Amax B dx 2 9 (l - Eh) 1-e
o f <—1> GnGod1=0 (n=>1) ! 26
o \(1-aB)z/, (26)
(19)
1
. G — constx [1 — =«(1 - X)] x—1 (27)
4  Evaluation ofpn . 2
The quasi-linear diusion term Qi for electron- G-1- EKX x=0 (28)
cyclotron damping is written as We evaluate the eigenfunctio@® and eigenvalues,
9 v, 2(-1) by a relaxation method. The eigenvalugsare given
Qrr = _LM [ i (V_e) in table 1.
X 5(‘” -l Kiv ) afeo} (20) én| 1 2 3 4 5
Y 0.1 | 2.886 8.400 15417 26.643 40.196

03] 2377 4.983 12.837 20.314 31.568

wherey = [a - (v/c)z]*%,c is the speed of light
in vacuum and is the harmonic numbery and w. Table 1 eigenvalugg
are the frequency of the injected wave and the non-

relativistic electron-cyclotron frequency respectively.

Throughout this paper we consider only the X-mode

wave. TherD is taken to be independent of the ve-

locity. Moreover, for simplicity, we approximate the

relativistic resonance condition as

lwe V2
v kivii ~ w — |wc( ) kv =
(21)
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Fig. 1 Comparisons of, in the tokamak and helical

plasma

4.2 Results

We evaluated the poloidal electric field in a helical
symmetric plasma and the results are compared with
tokamak ones by Taguchi[1l]. The poloidal electric
field is represented as Eq.(9) and is analayzed in a
helical plasma.

Figure 1 showdp, values in a tokamak and a
helical plasma changing the magnetic field rippje
0.1, 0.3 and the normalized parallel velocity; 0, 0.5, -
1.0. We can see that tifg, increases as thebecomes
larger in both helical and tokamak plasma cases. And
the diferences of, is larger in the largee cases.
The value ofp/¢t ~ 1.25- 2 in the case oF , with
e = 0.3. The values of,, with variouse of a helical
plasma are shown in figure 2.

5 Conclusion

We have studied the poloidal electric field gener-
ated by ECH in a helical plasma. The linearized
Fokker-Planck equation has been solved by the ad-
joint method assuming a helically symmetic configu-
ration for simplicity. We have found that the gener-
ated electric potential of the helical plasma is about
20% larger than that of the tokamak configuration.
This indicates that the two times greater poloidal elec-
tic field is generated in aR helical plasma.

0-18 T T T T T T T T T
£=0.06 ——
016 | ™. £=0.10 ——— 1
kS =015 - --- |
0.14 E: £=0.20 rererere

012 F % 1

CRN 1

L oostf N2 ": ]
006 F N\t ’
004 F\ V% ’

0.02 | N 1

S N

_002 L 1 1 1 1 L 1 L 1
0O 02 04 06 08 1 12 14 16 18 2

Fig. 2 Plots ofF,, for helical plasma withe = 0.05, 0.1,
0.15,0.2
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