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We present a data mining technique for the analysis of multichannel oscillatory timeseries data and show
an application using poloidal arrays of magnetic sensors installed in the H-1 heliac. The procedure is highly
automated, and scales well to large datasets. In a preprocessing step, the timeseries data is split into short time
segments to provide time resolution, and each segment is represented by a singular value decomposition (SVD).
By comparing power spectra of the temporal singular vectors, singular values are grouped into subsets which
define fluctuation structures.

Thresholds for the normalised energy of the fluctuation structure and the normalised entropy of the SVD are
used to filter the dataset. We assume that distinct classes offluctuations are localised in the space of phase differ-
ences (n, n+1) between each pair of nearest neighbour channels. An expectation maximisation (EM) clustering
algorithm is used to locate the distinct classes of fluctuations, and a cluster tree mapping is used to visualise
the results. Different classes of fluctuations in H-1 distinguished by this procedure are shown to be associated
with MHD activity around separate resonant surfaces, with corresponding toroidal and poloidal mode numbers.
Equally interesting are some clusters that don’t exhibit this behaviour.
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1 Motivation

Rotational transform parameter scans have been under-
taken in the H-1NF heliac [1, 2, 3]. Using 28 Mirnov coils
over 92 discharges, with each shot incrementally changing
the magnetic geometry, a large set of timeseries data was
produced.

The motivation for the present work has been to find
an algorithm which, with minimal human interaction, can
group together all similar fluctuations over a large num-
ber of shots. Here we present our method, showing that it
can be used to discover interesting spectral features and to
map classes of fluctuations to any known parameter of the
dataset, e.g.: magnetic geometry.

2 Data

Two toroidally-separated poloidal Mirnov coil arrays were
used in the experimental campaign described here, one ar-
ray is shown in figure 1. An additional linear array of 5
coils is also installed. In all, 28 Mirnov coils are used in
this dataset.

The experimental parameter scanned isκh, the ratio of
current in the helical winding coil to that in the toroidal and
poloidal field coils. To a good approximation,κh scales lin-
early with rotational transform on axis ( ι0). Due to the pre-
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Fig. 1 One of two poloidal Mirnov coil arrays installed in the
H-1 heliac

cisely controllable coil power supplies, very reproducible
plasmas can be formed with an accuracy in vacuum field
rotational transform of 1 part in 1000. The range of config-
urations used here is shown in figure 2, from a monotonic
profile with  ι0 = 1.12,  ιa = 1.28 (κh = 0) to a reverse-shear
profile with  ι0 = 1.45,  ιa = 1.46,  ιmin = 1.41 (κh = 1.07).

The time evolution of Mirnov spectra and line-
averaged electron density for shot typical of this dataset are
shown in figure 3. The RF power is essentially constant
at 60 kW, producing peak density of ¯ne = 1018m−3. The
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Fig. 2 Rotational transform profiles used in this campaign.
Poincaré plots shown for the various magnetic configu-
rations.
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Fig. 3 Typical shot for this campaign (atκh = 1.0), showing
Mirnov spectra in the top panel and line-averaged elec-
tron density in the lower panel. Heating power (60 kW
RF) is essentially constant throughout the discharge.

Mirnov spectra shows multiple co-existing modes, with the
higher frequency features (f > 50 kHz) showing Alfvénic
density scaling (f ∝ n−1/2

e ).

3 Data Pre-processing

Data mining procedures generally have 3 stages: firstly the
data needs to be pre-processed into a format suitable for
the main algorithm; secondly the main algorithm (neural
network, clustering, association rules, etc) is applied tothe
data, finally the results are visualised and interpreted. The
pre-processing used here involves separating out different
mode components from the timeseries data and mapping
them to a phase space in which the main clustering algo-
rithm is used to distinguish different classes of fluctuation.

For each shot, we split the timeseries data into short
time segments, in this case we use∆t = 1 ms. For each
short time segment, we take the singular value decompo-
sition (SVD) [4] of all Mirnov channels. Noise is filtered
out of the system by placing a threshold on the normalised

energy of a singular value (pk = a2
k/E, E =

∑NCh

k=1 ak for s.v.
ak andNCh < Ns whereNCh is the number of channels and
Ns is the number of samples in∆t). Noisy short time seg-
ments can be filtered with a threshold value of normalised
entropy (H = −

∑
k pk log pk/ logNCh).

A mode can be be described by several singular val-
ues, for example a rotating mode will have two orthog-
onal bases (i.e. sine and cosine topos (spatial basis vec-
tor) with chronos (temporal basis vector) also withπ/2
phase difference). We assume that singular vectors whose
chronos have similar power spectra belong to the same
mode, grouping together sets of singular values with nor-
malised cross-power above a threshold valueγ:

γa,b =
G(a, b)2

G(a, a)G(b, b)
, G(a, b) = 〈|F (a)F ∗(b)|〉, (1)

whereF is the Fourier transform, and〈. . .〉 represents the
spectral average. An examination of a randomly selected
subset of SVDs showed that a threshold ofγ = 0.7 is suit-
able for the present dataset. Each group of singular values
defines afluctuation structure.

For each fluctuation structure, we take the inverse
SVD using only the allocated subset of singular val-
ues (others are set to zero) to return timeseries data for
each coil representing the given fluctuation. From these
timeseries we take the phase differences between nearest
neighbour coils to produce coordinates inNCh-dimensional
phase space (“∆φ-space”) in which the clustering algo-
rithm operates.

4 Clustering

We aim to discover any underlying lower-dimensional
model of the dataset, i.e.: to group data points into classes
or modes which can then be mapped back to other proper-
ties, such as magnetic geometry. We assume that distinct
modes of fluctuation will be localised in the∆φ-space de-
fined by the nearest neighbour phase-differences. This∆φ-
space localisation can be easily understood in the simpli-
fied case of poloidally equispaced Mirnov arrays in cylin-
drical geometry – here a mode with poloidal mode number
mwill be localised in the region of∆φ(i, i + 1) = 2πm/NM,
where NM is the number of Mirnov coils in the array.
Clearly the heliac geometry is not so simple, however the
clustering algorithm can find arbitrary phase structures and
there is no need to interpret the phase structure before clus-
tering.

We use the expectation maximisation (EM) cluster-
ing algorithm which finds the most likely values of latent
variables in a probabilistic model [6]. Here we model the
data byNCl NCh-dimensional Gaussian distributions in∆φ-
space, with mean and standard deviation for each cluster
as the set of latent variables. To ensure the results are not
biased by the assumption of Gaussian cluster shape, we
compare the EM clustering results with results from an ag-
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Fig. 4 A Cluster tree representation of theκh scan data. The figure in the bottom left corner contains the whole dataset; its upper panel
shows the fluctuation structures mapped tof andκh, the numbers 1 (2000) at the top right are the tree level,NCl , and cluster
population respectively. The lower panel shows the contours of low-order rational surface within the plasma minor radius (y-axis)
for the configurations. For clarity, only a subset of clusters within the tree have their contents displayed and EM:G has been
displaced to prevent overlap. Vertical parent-child distance is proportional to the distance between cluster means, while line
thickness is inversely proportional to the Gaussian width of the cluster. Several AH clusters are also shown for comparison.

glomerative hierarchical (AH) clustering algorithm. Good
agreement is found between results from both methods.

5 Results

Shown in figure 4 is a cluster tree graph with plots showing
frequency vs.κh of selected clusters, each point plotted in
a graph corresponds to a fluctuation structure. The root of
the tree (left side) has the trivial case ofNCl = 1, such that
the whole dataset is contained in a single cluster. The high-
est level branch shown here (right side) hasNCl = 10. The
localisation of the clusters in thef − κh projection shown
here is due to the relation of the phase structure to the mag-
netic configuration – neither frequency norκh are included
in the clustering metric.

Vertical displacement at a node in the tree is propor-
tional to the distance in phase space between the parent and
child clusters. Results from AH clustering are also shown
for comparison. The AH clusters show good agreement
with EM clusters at theNCl = 10 end of the tree.

Near the root of the tree we find well defined clus-
ters which have resonant structure in thef − κh projection.
For the EM:B cluster, the frequency minimum occurs at
κh = 0.4, corresponding to the ι = 5/4 rational surface
in the low-shear region of the plasma. The EM:C cluster
has frequency minimum atκh ≃ 0.72, where the ι = 4/3
surface is located in the region of zero-shear. Both modes
show f ∼ | ι − n/m| resonant behavior, as do other clusters

for higher order rational surface configurations. Analysis
of the phase structure of these modes has shown that the
dominant Fourier components are those expected for the
relevant rational surface, i.e.: (n,m) = (4, 3) for the ι = 4/3
mode [7].

Cluster EM:O has very well defined (n,m) = (0, 0)
structure and also exists in configurations where low order
rational surfaces exist in low-shear regions. Cluster EM:J
appears to be a helical Alfvén eigenmode (HAE) cou-
pled between the (7, 5) and (10, 7) resonance, thisδn = 3,
δm = 2 is consistent with the relatively large (n,m) = (3, 2)
Fourier component of the heliac magnetic geometry.

6 Discussion

The clustering occurs only in∆φ-space, and is unbiased
by theκh and frequency coordinates plotted in cluster tree
figure 4. The clusters can also be mapped to any other
known plasma properties.

Complications arise in the case of H-1 configuration
scans due to the changing shape of magnetic field with
κh. The coil coordinates have been mapped toκh-averaged
magnetic angles to account for this.

The process has been kept general enough for it to be
applicable to any set of geometrically ordered timeseries
data. While the simple phase difference clustering metric
works fine in this case, an alternative metric may be re-
quired if timeseries from other diagnostics are included.
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The scalability depends on the clustering algorithm
used. The EM method scales well with the number of data-
pointsNdp (Ndp×NCl), while the AH method scales poorly
(N2

dp). Variations to the EM clustering algorithm and al-
ternative ways to quantify the results are areas of ongoing
investigation.

Data mining methods apart from the clustering anal-
ysis described here are also being investigated. “Associ-
ation rule mining” is one such approach. It is designed
to discover temporal patterns in the entire spectrograms
such as shown in figure 3. In this context we search
for rules (frequent patterns) in the form of “if a strong
mode at f ≃ 10 kHz occurs from 10-20ms then a mode
at f ≃ 20 kHz from 40-50ms will occur (with e.g.: 50%
probability)”.
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