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A reliable method to evaluate the probability density function for escaping atom kinetic energies is required for 

the analysis of neutral particle diagnostic data used to study the fast ion distribution function in fusion plasmas. 

Digital processing of solid state detector signals is proposed in this paper as an improvement of the simple 

histogram approach. Probability density function for kinetic energies of neutral particles escaping from the plasma 

has been derived in a general form taking into account the plasma ion energy distribution, electron capture and loss 

rates, superposition along the diagnostic sight line and the magnetic surface geometry. A pseudorandom number 

generator has been realized that enables a sample of escaping neutral particle energies to be simulated for given 

plasma parameters and experimental conditions. Empirical probability density estimation code has been developed 

and tested to reconstruct the probability density function from simulated samples assuming Maxwellian and 

classical slowing down plasma ion energy distribution shapes for different temperatures and different slowing down 

times. The application of the developed probability density estimation code to the analysis of experimental data 

obtained by the novel Angular-Resolved Multi-Sightline Neutral Particle Analyzer has been studied to obtain the 

suprathermal particle distributions. The optimum bandwidth parameter selection algorithm has also been realized. 
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1. Introduction 

Measurements of kinetic energy distributions of 

neutral atoms escaping from magnetically confined 

plasma are used in controlled fusion experiments as a 

method to investigate the ion component distribution 

function and its evolution due to the application of 

various plasma heating schemes. The ion distribution 

function reflects the kinetic effects, the single particle 

confinement properties depending on the particular 

magnetic configuration, the finite β effects such as MHD 

induced fast ion losses, radial electric field effects, etc. 

The nuclear fusion reaction rate is determined by the ion 

distribution and thus its studies at suprathermal energies 

near the rate coefficient curve maximum are of primary 

importance. Advanced neutral particle diagnostics based 

on solid state detectors with high energy resolution, e.g. 

[1], are used to study the suprathermal ion distribution 

function. Statistical data processing is required to obtain a 

smooth normalized probability density function for 

particle energies using the measured random samples [2]. 

 

2. Escaping Neutral Particle Energy Distribution 

The probability density function (PDF) f(E) for 

kinetic energies of neutral H
0
 particles escaping from the 

plasma of a magnetic confinement fusion device in a 

general form is given by 
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where A is the normalization constant. The source 

function for H
0
 atoms of energy E within the plasma 

( )( )( , ) ( ) ( , ) ( ) v
ll

i i l
g E n f E nρ ρ ρ ρ σ= ∑    (2) 

is expressed via the local plasma proton distribution 

( ) ( , )
i i

n f Eρ ρ  and the sum of rates over all targets for 

the electron capture process. The derivatives 

( ) 0Q d dρ ρ+ = Λ >  and ( ) 0Q d dρ ρ− = Λ <  of 

the sight line distance Λ along the two intervals between 

1ρ =  and minρ ρ=  are obtained from the known 

structure of magnetic surfaces constρ = . The neutral 

flux attenuation enters in the form of Poisson exponents, 

where lmfp(E, ρ) is the H
0
 mean free path with respect to 

all electron loss reactions. 
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3. Numerical Experiment 

Ideally, the passive diagnostic data is an array 

(E1, …, EN) of energies of escaped neutral particles 

measured along a certain observation direction, and N is 

the total number of particles collected during a certain 

time interval. This array is a sample of realizations of the 

random variable E distributed according to the law (1). 

Such form of data is achievable with solid state detectors 

by using pulse height analysis techniques, while the other 

analyzers, e.g. ||E B
� �

 ones, intrinsically form a 

histogram of the incoming particle energies over a certain 

number of subintervals called energy channels. Technical 

details may be found in [1]. The formulation of the 

problem considered here is to obtain an estimate f
(*)

(E) of 

the unknown exact probability density function f(E) of 

neutral particle energies from the experimental data. The 

sought function preferably should satisfy a specified 

precision criterion. The obtained PDF estimate is then to 

be used to reconstruct the ion distribution for further 

analysis. 

Assuming a predefined theoretical PDF f(E) one can 

carry out a numerical experiment by generating a sample 

of escaped atom energies for given plasma parameters 

and experimental conditions. We apply the inverse 

cumulative distribution function (CDF) approach. First, a 

sample of pseudorandom numbers (u1, …, uN) uniformly 

distributed within the [ )0,1  interval is generated using 

an algorithm from [3]. Then, the energy values are 

calculated as solutions of the equation 

( )j jF E u= ,                (3) 

where ( )
0

( )
E
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is the CDF. These simulation results can be supplied as 

input data for the PDF estimation procedure to test its 

performance, since the original exact f(E) used in the 

simulation is known. 

Two typical ion energy distribution laws have been 

used in the numerical simulation, namely, (a) Maxwellian 

distribution with ion temperature Ti 
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incomplete gamma-function; and (b) the classical slowing 

down distribution for a delta-like fast ion source function 
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where the slowing down time 
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The ion velocity 2 /
p

v E m= , v0 is the injection 

velocity, S0 and e  determine the source rate and width, 

and t is the time. Fig. 1 (a) shows the Maxwellian PDF 

for two different Ti values and Fig 1 (b) shows the 

classical slowing down PDF at t = 0.8 s for injection 

energy E0 = 150 keV and two different pairs of the target 

plasma ne and Te values. Histograms of the corresponding 

pseudorandom number samples governed by these PDFs 

are shown in Fig. 1 (c) and (d). 

 

4. Data Processing Method 

As an improvement of the neutral particle diagnostic 

data analysis, we have applied the probability density 

estimation using kernel smoothing techniques, e.g., [5, 6]. 

The kernel PDF estimate 
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is determined by the kernel function K(z) and the kernel 

bandwidth h. The performance criterion of this method is 

the value of the mean integrated squared error 
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where averaging is over different samples of N 

realizations (E1, …, EN), and its “asymptote” for N >> 1 

(large sample approximation) 
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equals unity within (-1, 1) and equals nought outside. 

However, it is emphasized [5, 6] that the choice of the 

kernel function shape has a small influence on the method 

performance, while the bandwidth parameter choice is 

more important. Therefore, Gaussian kernel 

2 21
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zK z e
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has been used, since it has continuous derivative.
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A reliable practical method for optimum h selection 

was proposed in [8] and revisited recently in [9]. The 

bandwidth is sought by solving the equation 
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where the function 
r

φ  is expressed via kernel derivative 
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depends on the values
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Fig. 1. (a) Maxwellian PDF for Ti = 5 keV (green) and Ti = 10 keV (blue); (b) classical slowing down PDF for τs = 1 s 

(green) and τs = 0.01 s (blue); (c) histograms of pseudorandom number samples distributed according to the 

laws shown in (a); (d) histograms of pseudorandom number samples distributed according to the laws shown in (b); 

(e) kernel PDFs calculated from Maxwellian law pseudorandom number samples shown in (c); (f) kernel PDFs 

calculated from slowing down distribution law pseudorandom number samples shown in (d). 
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Direct implementation of formula (15) is slow. An 

approximate fast calculation technique is given in [9]. 

 

5. Application to Experimental Data 
These methods have been tested by reconstructing the 

probability density function from the generated pseudorandom 

number samples assuming Maxwellian and classical slowing 

down plasma ion energy distribution shapes for different 

temperatures and different slowing down times. The test results 

are shown in Fig. 1 (e) and (f). The analysis of passive 

chord-integrated experimental data obtained with the 

Angular-Resolved Multi-Sightline Neutral Particle Analyzer [1] 

on Large Helical Device is illustrated in Fig. 2. Kernel 

smoothing methods require a certain choice of the bandwidth 

parameter. An automatic choice described in Section 4 is 

preferable for routine data processing. 
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Fig. 2. Experimental H
0
 energy spectra (upper) and PDF estimates (lower) for two different ion heating schemes. 


