The Li-wall Stellarator Experiment in TJ-II

F.L. Tabarés and the TJ-II Team

Laboratorio Nacional de Fusión. CIEMAT. Madrid. Spain

Outlook

- Introduction
- Why Lithium?
- Li coating technique in TJ-II
- 2008 Results
 - Particle recycling and confinement
 - Plasma and Radiation profiles
 - Electron energy confinement
 - ELMs and L-H Transition
- Conclusions

MINISTERIO DE CIENCIA E INNOVACIÓN

The Stellarator Reactor

Reactor issues:

Stellarator characteristics

- Steady State operation
- Power loads
- High E confinement
- High ne
- Particle exhaust

MINISTERIO DE CIENCIA

EINNOVACIÓN

• Low central Zeff(<1.6)

OK No disruptions, no Type I ELMs H modes No *Greenwald* density limit Intrinsic divertor configurations Impurity accumulation (?)

Stellarators are better suited for Fusion Reactor

but low recycling (wall pumping), low Zeff still required

Centro de Investigaciones

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

Lithium in Tokamaks

Why Li?

- Very low Z
- Strong H retention (LiH)
- Low melting point: Liquid PFC
- High impurity getter (O_2 , N_2 , CO, H_2O , CO_2 ...)

Very good results achieved in Tokamaks:

TFTR, CDX-U, FTU, T-10, T-11M....

Different ways of deposition; Liquid tray, pellets, LLL, CPS, evaporation.....

But : problems in reproduce beneficial effect: Total coverage??

TJ-II: first stellarator operated under Li walls

DE CIENCIA

Heliac Stellarator 4 periods R=1.5 m $\langle a \rangle = 15-25 \text{ cm}$ B_T=1 T ECH : 2x300kW,53.2 GHz NBI:2x400 kW, >30 KeV

Vol Plasma ~ $1m^3$ P₀=5.10⁻⁸ mbar

Low Z scenarios :

- 2 Graphite Limiters
- First Wall Boronization

Scientific goals: Scan in magnetic configuration, high β operation

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

P-W Interaction in TJ-II

2 Mobile Limiters @180 °

But: no limiter effect for <2.5 cm insertion in ECRH plasmas

PWI mainly on Toroidal limiter (VV)

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

Density control under wall saturation (ECRH)

shot # 16455

Lithium coating in TJ-II

Deposition on - 4 ovens, symmetric, tangential LOS top of B-coated - 4 g deposited each time (600°C) walls - Role of background pressure: - HV: line of sight - 10⁻³-10⁻⁵mbar: diffusion As deposited (HV)

> **Re-distribution by plasma:** Improving with operation time!!

1 gr of Li per oven, heated to ~600 °C during ~30 min (oven inventory > 8g)

ESPAÑA

MINISTERIO DE CIENCIA **EINNOVACIÓN**

Energéticas, Medicambientales y Tecnológicas

Li-wall experimental campaigns

- May-June 2007: 4 g fully evaporated under vacuum. Li-wall plasmas: ECRH/NBI H plasmas: Presented at the ISHW, Toki Oct.07
 Nov-Dec 2007: B wall reference discharges ECRH/NBI H Plasmas
 + Improvement of NBI and ECRH heating systems
- Feb-June 2008: New Li-W Campaign: Refreshing of Li layer by repetitive evaporation: H/He/ECRH/NBI Plasmas

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

GOBIERNO

E ESPAÑA

MINISTERIO

DE CIENCIA

EINNOVACIÓN

Density control evolution (2008)

Particle Control Li vs B

Lab. Experiments: $4.2 \cdot 10^{17} \text{ cm}^{-2} \textcircled{0} 1.7 \text{ KeV}$ (Sugai et al)

iemat

y Tecnológicas

Dynamic particle balance

 $dN/dt = f. Qin-N/(\tau p/1-R)$

For ECRH plasmas: f ~1, t peff ~8 ms, R<0.2!!

He plasmas: R<1!!, enhanced contamination

gas puf

gas

1100

1150

time (ms)

1050

10

8

6

4

2

0

1000

He plasma

Li emission

line density (10¹⁹ m⁻⁰

0.8

0.6

0.4

0.2

1250

F.L. Tabarés and the TJ-II Team 18th Int. Toki Conference Dec.2008.

1200

Impurity composition/generation

But...expected?:

Reduction>30x!!

Efect of underlying coating?

GOBIERNO DE ESPAÑA MINISTERIO DE CIENCIA E INNOVACIÓN

Profile shape: impurity & n_e behavior

Energéticas, Medicambientales y Tecnológicas

EINNOVACIÓN

18th Int. Toki Conference Dec.2008.

Edge profile evolution

Plasma profile control by puffing

Energéticas, Medicambientales y Tecnológicas

F.L. Tabarés and the TJ-II Team 18th Int. Toki Conference Dec.2008.

Energy Confinement

Energy Confinement

ELM activity and transitions

Density Fluctuations

y Tecnológicas

L-H Transition

Ciemat

Centro de Investigaciones Energéticas, Medicambientales

y Tecnológicas

Radial electric field in ECRH and NBI regimes

There is a transition in the structure of plasma potential from pure ECRH to NBI plasmas. Negative edge radial electric fields can reach values in the order of 100 V/cm in the NBI phase.

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

Conclusions

- Li coating by evaporation was performed in TJ-II.
- Only a partial coverage initially achieved, but evolved with plasma interaction
- Machine operation more reliable and reproducible

Extended operational window

- Density control highly improved, long lasting effect
- Strong change in particle recycling: very low R obtained!
- Good impurity control, but still C dominated (?)
- Strong confinement improvements in NBI plasmas.
- Sawtooth and ELM-like activity observed during transitions to enhanced confinement modes (L-H Transition)
- Change in plasma profiles controlled by fuelling strategy

Improvement of technique still possible:

Full Li wall (CPS?) + SMB fuelling in preparation

Centro de Investizacione reéticas, Medicambientales Tecnológicas

MINISTERIO DE CIENCIA E INNOVACIÓN Ciernot Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas