

A High-Power Gyrotron and high-power mm wave technology for Fusion Reactor

K.Sakamoto, K.Kajiwara, A.Kasugai, Y.Oda, K.Takahashi, T.Kobayashi, A.Isayama, S.Moriyama

Japan Atomic Energy Agency (JAEA)

Contents

(1) Results of 170 GHz Gyrotron for ITER (Working since 2006)

(2) Other Topics

- High order mode gyrotron (TE31,12)
- ITER Launcher and Transmission line
- EC system on JT-60U
- New magnet

Development of EC technology will contribute to all kind of magnet confinement fusion devices including DEMO reactor.

ITER Gyrotron

Gyrotron and EC system

Features of 170GHz 1MW Gyrotron for ITER

Status of ITER Gyrotron (I-J5M2)

Output energy of ~200GJ was attained with >2 years operation.

Stable Oscillation in Hard Excitation

Experiment vs. Simulation (Single mode analysis)

Nonlinear Excitation

(Two-modes simulation)

Nonlinear Excitation

Nonlinear Excitation

Transmission line for Gyrotron test

Transmission line and Dummy load

1MW/800s/55% operation

Power Balance at 1MW Operation

Input Beam Power		1853.7
		48.4kVx38.3A
Total	measured power	1853.5
	Generated RF power	1111.5
	at cavity (A + B)	1111.5
	Collector heat load	742

RF Loss in the Gyrotron (A)	87.2
relief windows	8.7
Ceramic insulator for CPD	15.2
Mirrors (1st~3rd)	5.9
Launcher	15.3
Beam tunnel	2.6
Gyrotron body & 4th mirror	5
Cavity	34.5

Gyrotron Output (B)	1024.3
Dummy Load	968
Miter Bends	2.7
Waveguide	8
MOU	45.6

(unit: kW)

Output power, Efficiency v.s. Beam Current

Hard excitation region

Long pulse operation (>300s)

Repetitive Operation (0.8MW/400s/~56%, every 30min)

Stable operation. No conditioning between shots.

Demonstration of 1hr operation at 0.8MW

Stable 1hr operation at 0.8MW at 57%

Progress of gyrotron development in JAEA

Results of $TE_{31,12}$ oscillation (170GHz)

1.56MW stable oscillation was achieved with cylindrical cavity. (w/o CPD)

Long Pulse Gyrotron (TE_{31,12} oscillation)

Objective: Study of Oscillation stability at 1.5 MW relevant-cylindrical mode (does not mean a power increase for ITER)

Freq. : 170 GHz

Osci. Mode: TE_{31.12}

(1.25kW/cm² @1MW osci.)

Output : Gaussian like beam

Collector, Electron Gun, Window, etc.

: Same with TE_{31,8} gyrotron

Experiment start from April 2009.

Layout of EC system of ITER

EC H&CD (Transmission Line, Launcher)

Gyrotron

Miter bends

Gyrotron power is utilized for the developments of

Transmission line, EC components,

ITER Launcher.

40m Waveguide +7 bends

96 % transmission

Power deposition around bends

Gyrotron power is used for Launcher development

SCM for JAEA Test stand

SC Magnet for fast frequency tuning

7T magnet with sweeping coil

Bore diameter: 240mm

Sweeping range: -0.2T~0.2T

Sweeping Speed: 0.2T/5sec (1GHz/1sec)

Liq. He free, conventional power supply

Experimental Data

Quick frequency (oscillation mode) control is possible with a combination of beam voltage control

High power and long pulse on JT-60U (110GHz system)

Construction: 1998 Full operation: 2001

- 4 high power gyrotrons
- 4 transmission lines (HE11 mode)
- 2 antennas (launchers)
- 2.9 MW x 5.0 s plasma injection
- 1.5MW x 1.0s gyrotron operation

Conclusion

- 1.0MW/800s/55%
 Demonstrated ITER basic requirement (ITER:1.0MW/500s/50%)
- 0.8MW/1hour/57%
- Output Energy of ~200GJ (under working)
- High Order mode gyrotron will be tested from 2009.4.
- Development of Transmission line and launcher

EC technology will be inevitable for all kind of magnet confinement fusion devices including DEMO reactor.