Probability distribution function of density fluctuation in cylindrical helicon plasmas

<u>H. Arakawa</u>, S. Inagaki^{*a*}, K. Kamataki, Y. Nagashima^{*b*}, T. Yamada^{*b*}, S. Sugita, M. Yagi^{*a*}, N. Kasuya^{*c*}, A. Fujisawa^{*c*}, S. -I. Itoh^{*a*} and K. Itoh^{*c*}

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan ^aResearch Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan ^bGraduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan ^cNational Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

E-mail:arakawa@riam.kyushu-u.ac.jp

Intermittent phenomena in inhomogeneous magnetized plasma are considered to be associated with non-linear mechanism in turbulent fluctuation. Intermittency produces a tail in the probability distribution function (PDF) of fluctuation signals. In LMD-U, fluctuation spectrum are changed depending on neutral pressure by the damping effect of the collisions with neutral particles[1,2,3]. In this study, we characterize the PDF of turbulence fluctuation in various neutral pressure conditions (2 – 5 mTorr, Ar) for understanding of non-linearity of turbulence. Figures 1 (a) and (b) show the power spectrum of fluctuation on ion saturation current (\tilde{I}_{is}) for the case of 2 and 5 mTorr neutral pressure, measured by a 64-ch poloidal probe array, which decomposed $\theta - t$ space into m - f space. Figures 1 (c),(d),(e) and (f) show the typical time evolution of I_{is} and PDF. The typical operational condition and plasma parameters are 3 kW RF power, 0.09 T magnetic field, 6×10^{18} m⁻³ peak electron density, 3 eV electron temperature. At low neutral pressure condition (2 mTorr), irregular peaks and broadband spectrum are found in power spectrum. At high neutral pressure condition (5 mTorr), spectral peaks lie along a straight line in the m - f space and a large tail is observed in the PDF. We discuss the neutral pressure dependence of the tail in the PDF.

Figure 1: (a),(b)Power spectrum of I_{is} by 64 ch probe array. (c),(d) Typical time evolution of I_{is} . (e),(f) PDF. (a),(c),(e) are 2 mTorr and (b),(d),(f) are 5 mTorr neutral pressure condition.

- [1] Y. Nagashima, et al., ICPP 2008, (2008) FB.01-X-3v.
- [2] H. Arakawa, et al., Plasma Phys. Control. Fusion, **51** (2009) 085001.
- [3] N. Kasuya, et al., Phys. Plasmas, **15** (2008) 052302.